2 research outputs found

    Case-Building Behavior, Persistence, and Emergence Success of \u3ci\u3ePycnopsyche Guttifer\u3c/i\u3e (Walker) (Trichoptera: Limnephilidae) in Laboratory and \u3ci\u3ein situ\u3c/i\u3e Environments: Potential Trade-Offs of Material Preference

    Get PDF
    When removed from their cases in a non-flow laboratory environment, 5th instar Pycnopsyche guttifer (Walker) larvae were always successful in constructing a new case within 24 h when woody debris was present as a material choice. Most were successful within 1 h. Larvae were never successful at case building in the absence of wood in a non-flow environment. These laboratory-constructed ‘emergency cases’ were flimsy, lacking in shape, and larger than field cases. Laboratory case size, shape, and material preference remained constant after repeated daily evacuations over a series of 10 days. Larvae could be induced to construct a case composed of mineral particles only in the absence of wood and when placed in a laboratory stream with simulated flow conditions, or in situ in a natural stream. The emergence success of P. guttifer specimens induced to build these mineral cases, however, was significantly higher than that of larvae remaining in their field cases or of larvae that built wood cases. This result is likely due to a fungal infection that affected only larvae in wood cases. Our results demonstrate a scenario where a clearly non-preferred case construction material appears to increase survival

    Case-Building Behavior, Persistence, and Emergence Success of \u3ci\u3ePycnopsyche Guttifer\u3c/i\u3e (Walker) (Trichoptera: Limnephilidae) in Laboratory and \u3ci\u3ein situ\u3c/i\u3e Environments: Potential Trade-Offs of Material Preference

    Get PDF
    When removed from their cases in a non-flow laboratory environment, 5th instar Pycnopsyche guttifer (Walker) larvae were always successful in constructing a new case within 24 h when woody debris was present as a material choice. Most were successful within 1 h. Larvae were never successful at case building in the absence of wood in a non-flow environment. These laboratory-constructed ‘emergency cases’ were flimsy, lacking in shape, and larger than field cases. Laboratory case size, shape, and material preference remained constant after repeated daily evacuations over a series of 10 days. Larvae could be induced to construct a case composed of mineral particles only in the absence of wood and when placed in a laboratory stream with simulated flow conditions, or in situ in a natural stream. The emergence success of P. guttifer specimens induced to build these mineral cases, however, was significantly higher than that of larvae remaining in their field cases or of larvae that built wood cases. This result is likely due to a fungal infection that affected only larvae in wood cases. Our results demonstrate a scenario where a clearly non-preferred case construction material appears to increase survival
    corecore