40 research outputs found

    Oligomeric state of hypoxanthine-guanine phosphoribosyltransferase from Mycobacterium tuberculosis

    Get PDF
    Sedimentation equilibrium and size-exclusion chromatography experiments on Mycobacterium tuberculosis hypoxanthine-guanine phosphoribosyltransferase (MtHGPRT) have established the existence of this enzyme as a reversibly associating mixture of dimeric and tetrameric species in 0.1\ua0M Tris-HCl−0.012\ua0M MgCl, pH 7.4. Displacement of the equilibrium position towards the larger oligomer by phosphate signifies the probable existence of MtHGPRT as a tetramer in the biological environment. These data thus add credibility to the relevance of considering enzyme function in the light of a published tetrameric structure deduced from X-ray crystallography. Failure of 5-phospho-α-D-ribosyl-1-pyrophosphate (PRib-PP) to perturb the dimer−tetramer equilibrium position indicates the equivalence and independence of binding for this substrate (the first to bind in an ordered sequential mechanism) to the two oligomers. By virtue of the displacement of the equilibrium position towards dimer that is affected by removing MgCl from the Tris-HCl buffer, it can be concluded that divalent metal ions, as well as phosphate, can affect the oligomerization. These characteristics of MtHGPRT in solution are correlated with published crystal structures of four enzyme−ligand complexes

    Antimalarial activity of prodrugs of N-branched acyclic nucleoside phosphonate inhibitors of 6-oxopurine phosphoribosyltransferases

    Get PDF
    Acyclic nucleoside phosphonates (ANPs) that contain a 6-oxopurine base are good inhibitors of the human and Plasmodium falciparum 6-oxopurine phosphoribosyltransferases (PRTs), key enzymes of the purine salvage pathway. Chemical modifications, based on the crystal structures of several inhibitors in complex with the human PRTase, led to the design of a new class of inhibitors - the aza-ANPs. Because of the negative charges of the phosphonic acid moiety, their ability to cross cell membranes is, however, limited. Thus, phosphoramidate prodrugs of the aza-ANPs were prepared to improve permeability. These prodrugs arrest parasitemia with IC values in the micromolar range against Plasmodium falciparum-infected erythrocyte cultures (both chloroquine-sensitive and chloroquine-resistant Pf strains). The prodrugs exhibit low cytotoxicity in several human cell lines. Thus, they fulfill two essential criteria to qualify them as promising antimalarial drug leads
    corecore