4 research outputs found

    Experimental Validation of Cryobot Thermal Models for the Exploration of Ocean Worlds

    No full text
    The tables in this repository represent the data used in the figures and analyses of the paper "Experimental Validation of Cryobot Thermal Models for the Exploration of Ocean Worlds", published in the Planetary Science Journal. The provided data was collected between 2020 and 2022.Work at the Jet Propulsion Laboratory, California Institute of Technology, was carried out under a contract (80NM0018D0004) with the National Aeronautics and Space Administration (NASA) and with funding from a NASA Scientific Exploration Subsurface Access Mechanism for Europa (SESAME) grant (80NM0018F0560). Work at the University of Washington was carried out under the same SESAME grant (80NM0018F0560). Work at Stone Aerospace and MIT was carried out under a separate NASA SESAME grant (80NSSC19K0612), as well as under the MIT TVML Fellowship

    Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes

    Get PDF
    textabstractThe evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes – carotid body glomus cells, and ‘pulmonary neuroendocrine cells’ (PNECs) -are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive ‘neuroepithelial cells’ (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches

    2023 EELS field tests at Athabasca Glacier as an icy moon analogue environment

    No full text
    JPL is developing a versatile and highly intelligent Exobiology Extant Life Surveyor (EELS) robot that would enable access to subsurface oceans and near-surface liquid reservoirs through existing conduits, such as the vents at the south pole of Enceladus or the putative geysers on Europa. A key mobility requirement for future vent exploration missions will be the ability to carefully descend and hold position in the vent to collect and analyze samples while withstanding plume forces without human intervention. Furthermore, this must be accomplished in a highly uncertain environment, requiring versatile hardware and intelligent autonomy. To work towards that goal, we have prototyped the EELS 1.0 and EELS 1.5 robots for horizontal and vertical mobility, respectively, in icy terrain. Autonomous surface mobility of EELS 1.0 was previously validated in a variety of terrain, including snowy mountains, ice rinks, and desert sand. Vertical mobility of EELS 1.5 was developed on laboratory ice walls. This paper presents the first mobility trials for both robots on large-scale, natural icy terrain: the Athabasca Glacier located in Alberta, Canada, a terrestrial analogue to the surfaces and subsurfaces of icy moons. This paper provides a preliminary written record of the test campaign’s four major trials: 1) surface mobility with EELS 1.0, 2) vertical mobility with EELS 1.5, 3) science instrument validation, and 4) terramechanics experiments. During this campaign, EELS 1.5 successfully held position and descended ~1.5 m vertically in an icy conduit and EELS 1.0 demonstrated surface mobility on icy surfaces with undulations and slopes. A miniaturized capillary electrophoresis (CE) instrument built to the form factor of an EELS module was tested in flowing water on the glacier and successfully demonstrated automated sampling and in-situ analysis. Terramechanics experiments designed to better understand the interaction between different ice properties and the screws that propel the robot forwards were performed on horizontal and vertical surfaces. In this paper we report the outcomes of the four tests and discuss their implications for potential future icy missions. The field test also demonstrated EELS’s ability to support Earth science missions. Another potential near-term follow-on could be a technology demonstration on the Moon. This paper is a high level report on the execution of the field test. Data and results will be detailed in subsequent publications
    corecore