71 research outputs found

    Tricarboxylic Acid Cycle Activity Measured by 13C Magnetic Resonance Spectroscopy in Rats Subjected to the Kaolin Model of Obstructed Hydrocephalus

    Get PDF
    Evaluating early changes in cerebral metabolism in hydrocephalus can help in the decision making and the timing of surgical intervention. This study was aimed at examining the tricarboxylic acid (TCA) cycle rate and 13C label incorporation into neurotransmitter amino acids and other compounds 2 weeks after rats were subjected to kaolin-induced progressive hydrocephalus. In vivo and ex vivo magnetic resonance spectroscopy (MRS), combined with the infusion of [1,6-13C]glucose, was used to monitor the time courses of 13C label incorporation into the different carbon positions of glutamate in the forebrains of rats with hydrocephalus as well as in those of controls. Metabolic rates were determined by fitting the measured data into a one-compartment metabolic model. The TCA cycle rate was 1.3 ± 0.2 μmoles/gram/minute in the controls and 0.8 ± 0.4 μmoles/gram/minute in the acute hydrocephalus group, the exchange rate between α-ketoglutarate and glutamate was 4.1 ± 2.5 μmoles/gram/minute in the controls and 2.7 ± 2.6 μmoles/gram/minute in the hydrocephalus group calculated from in vivo MRS. There were no statistically significant differences between these rates. Hydrocephalus caused a decrease in the amounts of glutamate, alanine and taurine. In addition, the concentration of the neuronal marker N-acetyl aspartate was decreased. 13C Labelling of most amino acids derived from [1,6-13C]glucose was unchanged 2 weeks after hydrocephalus induction. The only indication of astrocyte impairment was the decreased 13C enrichment in glutamine C-2. This study shows that hydrocephalus causes subtle but significant alterations in neuronal metabolism already early in the course of the disease. These sub-lethal changes, however, if maintained and if ongoing might explain the delayed and programmed neuronal damage as seen in chronic hydrocephalus

    Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies in aging animals have shown that amyloid-beta protein (Aβ) accumulates and its transporters, low-density lipoprotein receptor-related protein-1 (LRP-1) and the receptor for advanced glycation end products (RAGE) are impaired during hydrocephalus. Furthermore, correlations between astrocytes and Aβ have been found in human cases of normal pressure hydrocephalus (NPH) and Alzheimer's disease (AD). Because hydrocephalus occurs frequently in children, we evaluated the expression of Aβ and its transporters and reactive astrocytosis in animals with neonatal hydrocephalus.</p> <p>Methods</p> <p>Hydrocephalus was induced in neonatal rats by intracisternal kaolin injections on post-natal day one, and severe ventriculomegaly developed over a three week period. MRI was performed on post-kaolin days 10 and 21 to document ventriculomegaly. Animals were sacrificed on post-kaolin day 21. For an age-related comparison, tissue was used from previous studies when hydrocephalus was induced in a group of adult animals at either 6 months or 12 months of age. Tissue was processed for immunohistochemistry to visualize LRP-1, RAGE, Aβ, and glial fibrillary acidic protein (GFAP) and with quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR) to quantify expression of LRP-1, RAGE, and GFAP.</p> <p>Results</p> <p>When 21-day post-kaolin neonatal hydrocephalic animals were compared to adult (6–12 month old) hydrocephalic animals, immunohistochemistry demonstrated levels of Aβ, RAGE, and LRP-1 that were substantially lower in the younger animals; in contrast, GFAP levels were elevated in both young and old hydrocephalic animals. When the neonatal hydrocephalic animals were compared to age-matched controls, qRT-PCR demonstrated no significant changes in Aβ, LRP-1 and RAGE. However, immunohistochemistry showed very small increases or decreases in individual proteins. Furthermore, qRT-PCR indicated statistically significant increases in GFAP.</p> <p>Conclusion</p> <p>Neonatal rats with and without hydrocephalus had low expression of Aβ and its transporters when compared to adult rats with hydrocephalus. No statistical differences were observed in Aβ and its transporters between the control and hydrocephalic neonatal animals.</p

    Subtemporal Craniectomy for Recurrent Shunt Obstruction

    No full text

    Nerve Growth-Factor production by Lymphocytes

    No full text
    RT-PCR analysis and DNA sequencing of human lymphocytes mRNA revealed expression of Nerve growth facto
    corecore