576 research outputs found
Exploiting the directional sensitivity of the Double Chooz near detector
In scintillator detectors, the forward displacement of the neutron in the
reaction provides neutrino directional information as
demonstrated by the CHOOZ reactor experiment with 2,500 events. The near
detector of the forthcoming Double Chooz experiment will collect
events per year, enough to determine the average neutrino
direction with a half-cone aperture of in one year. It
is more difficult to separate the two Chooz reactors that are viewed at a
separation angle . If their strengths are known and
approximately equal, the azimuthal location of each reactor is obtained with
() and the probability of confusing them with a single
source is less than 11%. Five year's data reduce this ``confusion probability''
to less than 0.3%, i.e., a separation is possible. All of these
numbers improve rapidly with increasing angular separation of the sources. For
a setup with and one year's data, the azimuthal
uncertainty for each source decreases to . Of course, for Double
Chooz the two reactor locations are known, allowing one instead to measure
their individual one-year integrated power output to (), and
their five-year integrated output to ().Comment: 7 pages, 10 figure
Probing the Earth's interior with a large-volume liquid scintillator detector
A future large-volume liquid scintillator detector would provide a
high-statistics measurement of terrestrial antineutrinos originating from
-decays of the uranium and thorium chains. In addition, the forward
displacement of the neutron in the detection reaction
provides directional information. We investigate the requirements on such
detectors to distinguish between certain geophysical models on the basis of the
angular dependence of the geoneutrino flux. Our analysis is based on a
Monte-Carlo simulation with different levels of light yield, considering both
unloaded and gadolinium-loaded scintillators. We find that a 50 kt detector
such as the proposed LENA (Low Energy Neutrino Astronomy) will detect
deviations from isotropy of the geoneutrino flux significantly. However, with
an unloaded scintillator the time needed for a useful discrimination between
different geophysical models is too large if one uses the directional
information alone. A Gd-loaded scintillator improves the situation
considerably, although a 50 kt detector would still need several decades to
distinguish between a geophysical reference model and one with a large neutrino
source in the Earth's core. However, a high-statistics measurement of the total
geoneutrino flux and its spectrum still provides an extremely useful glance at
the Earth's interior.Comment: 21 pages, 9 figures. Minor changes, version accepted for publication
in Astroparticle Physic
Effects of nitrogen and potassium fertilization on the susceptibility of tomatoes to post-harvest proliferation of Salmonella enterica
Fresh fruits and vegetables are increasingly recognized as vehicles of salmonellosis. Pre- and post-harvest environmental conditions, and physiological, and genetic factors are thought to contribute to the ability of human pathogens to persist in the production environment, attach to, colonize and proliferate in and on raw produce. How field production conditions affect the post-harvest food safety outcomes is not entirely understood. This study tested how varying nitrogen and potassium fertilization levels affected the "susceptibility" of tomatoes to Salmonella infections following the harvest of fruits. Two tomato varieties grown over three seasons under high, medium, and low levels of nitrogen and potassium fertilization in two locations were inoculated with seven strains of Salmonella. Even though the main effects of nitrogen and potassium fertilization on the susceptibility of tomatoes to infections with Salmonella enterica were not statistically significant overall, differences in nitrogen concentrations in plant tissues correlated with the susceptibility of partially ripe tomatoes (cv. Solar Fire) to Salmonella. Tomato maturity and the season in which tomatoes were produced had the strongest effect on the ability of Salmonella to multiply in tomatoes. Tomato phenolics, accumulation of which is known to correlate with rates of the N fertilization, did not inhibit growth of Salmonella in vitro
Factors that affect proliferation of Salmonella in tomatoes post-harvest: the roles of seasonal effects, irrigation regime, crop and pathogen genotype
MAIN OBJECTIVES: Fresh fruits and vegetables become increasingly recognized as vehicles of human salmonellosis. Physiological, ecological, and environmental factors are all thought to contribute to the ability of Salmonella to colonize fruits and vegetables pre- and post-harvest. The goal of this study was to test how irrigation levels, fruit water congestion, crop and pathogen genotypes affect the ability of Salmonella to multiply in tomatoes post-harvest. EXPERIMENTAL DESIGN: Fruits from three tomato varieties, grown over three production seasons in two Florida locations, were infected with seven strains of Salmonella and their ability to multiply post-harvest in field-grown tomatoes was tested. The field experiments were set up as a two-factor factorial split plot experiment, with the whole-plot treatments arranged in a randomized complete-block design. The irrigation treatment (at three levels) was the whole-plot factor, and the split-plot factor was tomato variety, with three levels. The significance of the main, two-way, and three-way interaction effects was tested using the (type III) F-tests for fixed effects. Mean separation for each significant fixed effect in the model was performed using Tukey's multiple comparison testing procedure. MOST IMPORTANT DISCOVERIES AND SIGNIFICANCE: The irrigation regime per se did not affect susceptibility of the crop to post-harvest proliferation of Salmonella. However, Salmonella grew significantly better in water-congested tissues of green tomatoes. Tomato maturity and genotype, Salmonella genotype, and inter-seasonal differences were the strongest factors affecting proliferation. Red ripe tomatoes were significantly and consistently more conducive to proliferation of Salmonella. Tomatoes harvested in the driest, sunniest season were the most conducive to post-harvest proliferation of the pathogen. Statistically significant interactions between production conditions affected post-harvest susceptibility of the crop to the pathogen. UV irradiation of tomatoes post-harvest promoted Salmonella growth
Low and High Energy Phenomenology of Quark-Lepton Complementarity Scenarios
We conduct a detailed analysis of the phenomenology of two predictive see-saw
scenarios leading to Quark-Lepton Complementarity. In both cases we discuss the
neutrino mixing observables and their correlations, neutrinoless double beta
decay and lepton flavor violating decays such as mu -> e gamma. We also comment
on leptogenesis. The first scenario is disfavored on the level of one to two
standard deviations, in particular due to its prediction for U_{e3}. There can
be resonant leptogenesis with quasi-degenerate heavy and light neutrinos, which
would imply sizable cancellations in neutrinoless double beta decay. The decays
mu -> e gamma and tau -> mu gamma are typically observable unless the SUSY
masses approach the TeV scale. In the second scenario leptogenesis is
impossible. It is however in perfect agreement with all oscillation data. The
prediction for mu -> e gamma is in general too large, unless the SUSY masses
are in the range of several TeV. In this case tau -> e gamma and tau -> mu
gamma are unobservable.Comment: 32 pages, 9 figures. Discussion on leptogenesis changed due to
inclusion of flavor effects. To appear in PR
High relative humidity pre-harvest reduces post-harvest proliferation of Salmonella in tomatoes
Outbreaks of human illness caused by enteric pathogens such as Salmonella are increasingly linked to the consumption of fruits and vegetables. Knowledge on the factors affecting Salmonella proliferation on fresh produce therefore becomes increasingly important to safeguard public health. Previous experiments showed a limited impact of pre-harvest production practices on Salmonella proliferation on tomatoes, but suggested a significant effect of harvest time. We explored the data from two previously published and one unpublished experiment using regression trees, which allowed overcoming the interpretational difficulties of classical statistical models with higher order interactions. We assessed the effect of harvest time by explicitly modeling the climatic conditions at harvest time and by performing confirmatory laboratory experiments. Across all datasets, regression trees confirmed the dominant effect of harvest time on Salmonella proliferation, with humidity-related factors emerging as the most important underlying climatic factors. High relative humidity the week prior to harvest was consistently associated with lower Salmonella proliferation. A controlled lab experiment confirmed that tomatoes containing their native epimicrobiota supported significantly lower Salmonella proliferation when incubated at higher humidity prior to inoculation. The complex interactions between environmental conditions and the native microbiota of the tomato crop remain to be fully understood
Axion searches with Fermi and IACTs
Axion Like Particles (ALPs), postulated to solve the strong-CP problem, are
predicted to couple with photons in the presence of magnetic fields, which may
lead to a significant change in the observed spectra of gamma-ray sources such
as AGNs. Here we simultaneously consider in the same framework both the
photon/axion mixing that takes place in the gamma-ray source and that one
expected to occur in the intergalactic magnetic fields. We show that
photon/axion mixing could explain recent puzzles regarding the observed spectra
of distant gamma-ray sources as well as the recently published lower limit to
the EBL intensity. We finally summarize the different signatures expected and
discuss the best strategy to search for ALPs with the Fermi satellite and
current Cherenkov telescopes like CANGAROO, HESS, MAGIC and VERITAS.Comment: 4 pages, 4 figures. To appear in the proceedings of the "2nd Roma
International Conference on Astroparticle Physics", Villa Mondragone, Rome,
Italy, May 13-15 200
Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos
Decays of radionuclides throughout the Earth's interior produce geothermal
heat, but also are a source of antineutrinos. The (angle-integrated)
geoneutrino flux places an integral constraint on the terrestrial radionuclide
distribution. In this paper, we calculate the angular distribution of
geoneutrinos, which opens a window on the differential radionuclide
distribution. We develop the general formalism for the neutrino angular
distribution, and we present the inverse transformation which recovers the
terrestrial radioisotope distribution given a measurement of the neutrino
angular distribution. Thus, geoneutrinos not only allow a means to image the
Earth's interior, but offering a direct measure of the radioactive Earth, both
(1) revealing the Earth's inner structure as probed by radionuclides, and (2)
allowing for a complete determination of the radioactive heat generation as a
function of radius. We present the geoneutrino angular distribution for the
favored Earth model which has been used to calculate geoneutrino flux. In this
model the neutrino generation is dominated by decays in the Earth's mantle and
crust; this leads to a very ``peripheral'' angular distribution, in which 2/3
of the neutrinos come from angles > 60 degrees away from the downward vertical.
We note the possibility of that the Earth's core contains potassium; different
geophysical predictions lead to strongly varying, and hence distinguishable,
central intensities (< 30 degrees from the downward vertical). Other
uncertainties in the models, and prospects for observation of the geoneutrino
angular distribution, are briefly discussed. We conclude by urging the
development and construction of antineutrino experiments with angular
sensitivity. (Abstract abridged.)Comment: 25 pages, RevTeX, 7 figures. Comments welcom
- …