1,817 research outputs found

    Energy Density of Non-Minimally Coupled Scalar Field Cosmologies

    Get PDF
    Scalar fields coupled to gravity via ξRΦ2\xi R {\Phi}^2 in arbitrary Friedmann-Robertson-Walker backgrounds can be represented by an effective flat space field theory. We derive an expression for the scalar energy density where the effective scalar mass becomes an explicit function of ξ\xi and the scale factor. The scalar quartic self-coupling gets shifted and can vanish for a particular choice of ξ\xi. Gravitationally induced symmetry breaking and de-stabilization are possible in this theory.Comment: 18 pages in standard Late

    Crossings as a side effect of dependency lengths

    Get PDF
    The syntactic structure of sentences exhibits a striking regularity: dependencies tend to not cross when drawn above the sentence. We investigate two competing explanations. The traditional hypothesis is that this trend arises from an independent principle of syntax that reduces crossings practically to zero. An alternative to this view is the hypothesis that crossings are a side effect of dependency lengths, i.e. sentences with shorter dependency lengths should tend to have fewer crossings. We are able to reject the traditional view in the majority of languages considered. The alternative hypothesis can lead to a more parsimonious theory of language.Comment: the discussion section has been expanded significantly; in press in Complexity (Wiley

    On a class of stable, traversable Lorentzian wormholes in classical general relativity

    Get PDF
    It is known that Lorentzian wormholes must be threaded by matter that violates the null energy condition. We phenomenologically characterize such exotic matter by a general class of microscopic scalar field Lagrangians and formulate the necessary conditions that the existence of Lorentzian wormholes imposes on them. Under rather general assumptions, these conditions turn out to be strongly restrictive. The most simple Lagrangian that satisfies all of them describes a minimally coupled massless scalar field with a reversed sign kinetic term. Exact, non-singular, spherically symmetric solutions of Einstein's equations sourced by such a field indeed describe traversable wormhole geometries. These wormholes are characterized by two parameters: their mass and charge. Among them, the zero mass ones are particularly simple, allowing us to analytically prove their stability under arbitrary space-time dependent perturbations. We extend our arguments to non-zero mass solutions and conclude that at least a non-zero measure set of these solutions is stable.Comment: 23 pages, 4 figures, uses RevTeX4. v2: Changes to accommodate added references. Statement about masses of the wormhole correcte

    The world is not enough

    Get PDF
    We show that the 5-dimensional model introduced by Randall and Sundrum is (half of) a wormhole, and that this is a general result in models of the RS type. We also discuss the gravitational trapping of a scalar particle in 5-d spacetimes. Finally, we present a simple model of brane-world cosmology in which the background is a static anti-de Sitter manifold, and the location of the two 3-branes is determined by the technique of ``surgical grafting''.Comment: To be published in Phys. Rev. D with the title: ``Wormhole-surgery and cosmology on the brane: The world is not enough''. This revised version includes a discussion on the mechanism of gravitational trapping for a scalar particle which will not be published in the journa

    On Traversable Lorentzian Wormholes in the Vacuum Low Energy Effective String Theory in Einstein and Jordan Frames

    Full text link
    Three new classes (II-IV) of solutions of the vacuum low energy effective string theory in four dimensions are derived. Wormhole solutions are investigated in those solutions including the class I case both in the Einstein and in the Jordan (string) frame. It turns out that, of the eight classes of solutions investigated (four in the Einstein frame and four in the corresponding string frame), massive Lorentzian traversable wormholes exist in five classes. Nontrivial massless limit exists only in class I Einstein frame solution while none at all exists in the string frame. An investigation of test scalar charge motion in the class I solution in the two frames is carried out by using the Plebanski-Sawicki theorem. A curious consequence is that the motion around the extremal zero (Keplerian) mass configuration leads, as a result of scalar-scalar interaction, to a new hypothetical "mass" that confines test scalar charges in bound orbits, but does not interact with neutral test particles.Comment: 18 page

    Vibrations and fractional vibrations of rods, plates and Fresnel pseudo-processes

    Full text link
    Different initial and boundary value problems for the equation of vibrations of rods (also called Fresnel equation) are solved by exploiting the connection with Brownian motion and the heat equation. The analysis of the fractional version (of order ν\nu) of the Fresnel equation is also performed and, in detail, some specific cases, like ν=1/2\nu=1/2, 1/3, 2/3, are analyzed. By means of the fundamental solution of the Fresnel equation, a pseudo-process F(t)F(t), t>0t>0 with real sign-varying density is constructed and some of its properties examined. The equation of vibrations of plates is considered and the case of circular vibrating disks CRC_R is investigated by applying the methods of planar orthogonally reflecting Brownian motion within CRC_R. The composition of F with reflecting Brownian motion BB yields the law of biquadratic heat equation while the composition of FF with the first passage time TtT_t of BB produces a genuine probability law strictly connected with the Cauchy process.Comment: 33 pages,8 figure

    Zeta functions, renormalization group equations, and the effective action

    Get PDF
    We demonstrate how to extract all the one-loop renormalization group equations for arbitrary quantum field theories from knowledge of an appropriate Seeley--DeWitt coefficient. By formally solving the renormalization group equations to one loop, we renormalization group improve the classical action, and use this to derive the leading-logarithms in the one-loop effective action for arbitrary quantum field theories.Comment: 4 pages, ReV-TeX 3.

    Genuine Counterfactual Communication with a Nanophotonic Processor

    Full text link
    In standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by encoding information in particles he never interacts with. The first suggested protocol not only required thousands of ideal optical components, but also resulted in a so-called "weak trace" of the particles having travelled from Bob to Alice, calling the scalability and counterfactuality of previous proposals and experiments into question. Here we overcome these challenges, implementing a new protocol in a programmable nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides that operate at telecom wavelengths. This, together with our telecom single-photon source and highly-efficient superconducting nanowire single-photon detectors, provides a versatile and stable platform for a high-fidelity implementation of genuinely trace-free counterfactual communication, allowing us to actively tune the number of steps in the Zeno measurement, and achieve a bit error probability below 1%, with neither post-selection nor a weak trace. Our demonstration shows how our programmable nanophotonic processor could be applied to more complex counterfactual tasks and quantum information protocols.Comment: 6 pages, 4 figure

    Regular Magnetic Black Holes and Monopoles from Nonlinear Electrodynamics

    Get PDF
    It is shown that general relativity coupled to nonlinear electrodynamics (NED) with the Lagrangian L(F)L(F), F=FmnFmnF = F_mn F^mn having a correct weak field limit, leads to nontrivial static, spherically symmetric solutions with a globally regular metric if and only if the electric charge is zero and L(F)L(F) tends to a finite limit as FF \to \infty. Properties and examples of such solutions, which include magnetic black holes and soliton-like objects (monopoles), are discussed. Magnetic solutions are compared with their electric counterparts. A duality between solutions of different theories specified in two alternative formulations of NED (called FPFP duality) is used as a tool for this comparison.Comment: 6 pages, Latex2e. One more theorem, some comments and two references have been added. Final journal versio

    Semiclassical Gravity Theory and Quantum Fluctuations

    Get PDF
    We discuss the limits of validity of the semiclassical theory of gravity in which a classical metric is coupled to the expectation value of the stress tensor. It is argued that this theory is a good approximation only when the fluctuations in the stress tensor are small. We calculate a dimensionless measure of these fluctuations for a scalar field on a flat background in particular cases, including squeezed states and the Casimir vacuum state. It is found that the fluctuations are small for states which are close to a coherent state, which describes classical behavior, but tend to be large otherwise. We find in all cases studied that the energy density fluctuations are large whenever the local energy density is negative. This is taken to mean that the gravitational field of a system with negative energy density, such as the Casimir vacuum, is not described by a fixed classical metric but is undergoing large metric fluctuations. We propose an operational scheme by which one can describe a fluctuating gravitational field in terms of the statistical behavior of test particles. For this purpose we obtain an equation of the form of the Langevin equation used to describe Brownian motion.Comment: In REVTEX. 20pp + 4 figures(not included, available upon request) TUTP-93-
    corecore