10,314 research outputs found
Factors influencing the potency of marbofloxacin for pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida
For the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, Minimum Inhibitory Concentration (MIC) of marbofloxacin was determined in recommended broths and pig serum at three inoculum strengths. MICs in both growth matrices increased progressively from low, through medium to high starting inoculum counts, 104, 106 and 108 CFU/mL, respectively. P. multocida MIC ratios for high:low inocula were 14:4:1 for broth and 28.2:1 for serum. Corresponding MIC ratios for A. pleuropneumoniae were lower, 4.1:1 (broth) and 9.2:1 (serum). MIC high:low ratios were therefore both growth matrix and bacterial species dependent. The effect of alterations to the chemical composition of broths and serum on MIC were also investigated. Neither adjusting broth or serum pH in six increments over the range 7.0 to 8.0 nor increasing calcium and magnesium concentrations of broth in seven incremental steps significantly affected MICs for either organism. In time-kill studies, the killing action of marbofloxacin had the characteristics of concentration dependency against both organisms in both growth matrices. It is concluded that MIC and time-kill data for marbofloxacin, generated in serum, might be preferable to broth data, for predicting dosages of marbofloxacin for clinical use
Potency of marbofloxacin for pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida: Comparison of growth media
Pharmacodynamic properties of marbofloxacin were established for six isolates each of the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Three in vitro indices of potency were determined; Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Mutant Prevention Concentration (MPC). For MIC determination Clinical Laboratory Standards Institute guidelines were modified in three respects: (1) comparison was made between two growth media, an artificial broth and pig serum; (2) a high inoculum count was used to simulate heavy clinical bacteriological loads; and (3) five overlapping sets of two-fold dilutions were used to improve accuracy of determinations. Similar methods were used for MBC and MPC estimations. MIC and MPC serum:broth ratios for A. pleuropneumoniae were 0.79:1 and 0.99:1, respectively, and corresponding values for P. multocida were 1.12:1 and 1.32:1. Serum protein binding of marbofloxacin was 49%, so that fraction unbound (fu) serum MIC values were significantly lower than those predicted by correction for protein binding; fu serum:broth MIC ratios were 0.40:1 (A. pleuropneumoniae) and 0.50:1 (P. multocida). For broth, MPC:MIC ratios were 13.7:1 (A. pleuropneumoniae) and 14.2:1 (P. multocida). Corresponding ratios for serum were similar, 17.2:1 and 18.8:1, respectively. It is suggested that, for dose prediction purposes, serum data might be preferable to potency indices measured in broths
Combining Supernovae and LSS Information with the CMB
Observations of the Cosmic Microwave Background (CMB), large scale structure
(LSS) and standard candles such as Type 1a Supernovae (SN) each place different
constraints on the values of cosmological parameters. We assume an inflationary
Cold Dark Matter model with a cosmological constant, in which the initial
density perturbations in the universe are adiabatic. We discuss the parameter
degeneracies inherent in interpreting CMB or SN data, and derive their
orthogonal nature. We then present our preliminary results of combining CMB and
SN likelihood functions. The results of combining the CMB and IRAS 1.2 Jy
survey information are given, with marginalised confidence regions in the H_0,
Omega_m, b_IRAS and Q_rms-ps directions assuming n=1, Omega_Lambda+Omega_m=1
and Omega_b h^2=0.024. Finally we combine all three likelihood functions and
find that the three data sets are consistent and suitably orthogonal, leading
to tight constraints on H_0, Omega_m, b_IRAS and Q_rms-ps, given our
assumptions.Comment: 7 pages, 4 figures, submitted to ``The CMB and the Planck Mission'',
proceedings of the workshop held in Santander, Spain, June 199
Personal relatedness and attachment in infants of mothers with borderline personality disorder
The principal aim of this study was to assess personal relatedness and attachment patterns in 12-month-old infants of mothers with borderline personality disorder (BPD). We also evaluated maternal intrusive insensitivity toward the infants in semistructured play. We videotaped 10 mother-infant dyads with borderline mothers and 22 dyads where the mothers were free from psychopathology, in three different settings: a modification of Winnicott's Set Situation in which infants faced an initially unresponsive ("still-face") stranger, who subsequently tried to engage the infant in a game of give and take; the Strange Situation of Ainsworth and Wittig; and a situation in which mothers were requested to teach their infants to play with miniature figures and a toy train. In relation to a set of a priori predictions, the results revealed significant group differences as follows: (a) compared with control infants, toward the stranger the infants of mothers with BPD showed lower levels of "availability for positive engagement," lower ratings of "behavior organization and mood state," and a lower proportion of interpersonally directed looks that were positive; (b) in the Strange Situation, a higher proportion (8 out of 10) of infants of borderline mothers were categorized as Disorganized; and (c) in play, mothers with BPD were rated as more "intrusively insensitive" toward their infants. The results are discussed in relation to hypotheses concerning the interpersonal relations of women with BPD, and possible implications for their infants' development
Bayesian `Hyper-Parameters' Approach to Joint Estimation: The Hubble Constant from CMB Measurements
Recently several studies have jointly analysed data from different
cosmological probes with the motivation of estimating cosmological parameters.
Here we generalise this procedure to take into account the relative weights of
various probes. This is done by including in the joint \chi^2 function a set of
`Hyper-Parameters', which are dealt with using Bayesian considerations. The
resulting algorithm (in the case of uniform priors on the log of the
Hyper-Parameters) is very simple: instead of minimising \sum \chi_j^2 (where
\chi_j^2 is per data set j) we propose to minimise \sum N_j \ln (\chi_j^2)
(where N_j is the number of data points per data set j). We illustrate the
method by estimating the Hubble constant H_0 from different sets of recent CMB
experiments (including Saskatoon, Python V, MSAM1, TOCO and Boomerang).Comment: submitted to MNRAS, 6 pages, Latex, with 3 figures embedde
Systematic Errors in Cosmic Microwave Background Interferometry
Cosmic microwave background (CMB) polarization observations will require
superb control of systematic errors in order to achieve their full scientific
potential, particularly in the case of attempts to detect the B modes that may
provide a window on inflation. Interferometry may be a promising way to achieve
these goals. This paper presents a formalism for characterizing the effects of
a variety of systematic errors on interferometric CMB polarization
observations, with particular emphasis on estimates of the B-mode power
spectrum. The most severe errors are those that couple the temperature
anisotropy signal to polarization; such errors include cross-talk within
detectors, misalignment of polarizers, and cross-polarization. In a B mode
experiment, the next most serious category of errors are those that mix E and B
modes, such as gain fluctuations, pointing errors, and beam shape errors. The
paper also indicates which sources of error may cause circular polarization
(e.g., from foregrounds) to contaminate the cosmologically interesting linear
polarization channels, and conversely whether monitoring of the circular
polarization channels may yield useful information about the errors themselves.
For all the sources of error considered, estimates of the level of control that
will be required for both E and B mode experiments are provided. Both
experiments that interfere linear polarizations and those that interfere
circular polarizations are considered. The fact that circular experiments
simultaneously measure both linear polarization Stokes parameters in each
baseline mitigates some sources of error.Comment: 19 pages, 9 figures, submitted to Phys. Rev.
- …