10,937 research outputs found
Analytical Approximations for Calculating the Escape and Absorption of Radiation in Clumpy Dusty Environments
We present analytical approximations for calculating the scattering,
absorption and escape of nonionizing photons from a spherically symmetric
two-phase clumpy medium, with either a central point source of isotropic
radiation, a uniform distribution of isotropic emitters, or uniformly
illuminated by external sources. The analytical approximations are based on the
mega-grains model of two-phase clumpy media, as proposed by Hobson & Padman,
combined with escape and absorption probability formulae for homogeneous media.
The accuracy of the approximations is examined by comparison with 3D Monte
Carlo simulations of radiative transfer, including multiple scattering. Our
studies show that the combined mega-grains and escape/absorption probability
formulae provide a good approximation of the escaping and absorbed radiation
fractions for a wide range of parameters characterizing the medium. A realistic
test is performed by modeling the absorption of a starlike source of radiation
by interstellar dust in a clumpy medium, and by calculating the resulting
equilibrium dust temperatures and infrared emission spectrum of both the clumps
and the interclump medium. In particular, we find that the temperature of dust
in clumps is lower than in the interclump medium if clumps are optically thick.
Comparison with Monte Carlo simulations of radiative transfer in the same
environment shows that the analytic model yields a good approximation of dust
temperatures and the emerging UV to FIR spectrum of radiation for all three
types of source distributions mentioned above. Our analytical model provides a
numerically expedient way to estimate radiative transfer in a variety of
interstellar conditions and can be applied to a wide range of astrophysical
environments, from star forming regions to starburst galaxies.Comment: 55 pages, 27 figures. ApJ 523 (1999), in press. Corrected equations
and text so as to be same as ApJ versio
Factors influencing the potency of marbofloxacin for pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida
For the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, Minimum Inhibitory Concentration (MIC) of marbofloxacin was determined in recommended broths and pig serum at three inoculum strengths. MICs in both growth matrices increased progressively from low, through medium to high starting inoculum counts, 104, 106 and 108 CFU/mL, respectively. P. multocida MIC ratios for high:low inocula were 14:4:1 for broth and 28.2:1 for serum. Corresponding MIC ratios for A. pleuropneumoniae were lower, 4.1:1 (broth) and 9.2:1 (serum). MIC high:low ratios were therefore both growth matrix and bacterial species dependent. The effect of alterations to the chemical composition of broths and serum on MIC were also investigated. Neither adjusting broth or serum pH in six increments over the range 7.0 to 8.0 nor increasing calcium and magnesium concentrations of broth in seven incremental steps significantly affected MICs for either organism. In time-kill studies, the killing action of marbofloxacin had the characteristics of concentration dependency against both organisms in both growth matrices. It is concluded that MIC and time-kill data for marbofloxacin, generated in serum, might be preferable to broth data, for predicting dosages of marbofloxacin for clinical use
Potency of marbofloxacin for pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida: Comparison of growth media
Pharmacodynamic properties of marbofloxacin were established for six isolates each of the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Three in vitro indices of potency were determined; Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Mutant Prevention Concentration (MPC). For MIC determination Clinical Laboratory Standards Institute guidelines were modified in three respects: (1) comparison was made between two growth media, an artificial broth and pig serum; (2) a high inoculum count was used to simulate heavy clinical bacteriological loads; and (3) five overlapping sets of two-fold dilutions were used to improve accuracy of determinations. Similar methods were used for MBC and MPC estimations. MIC and MPC serum:broth ratios for A. pleuropneumoniae were 0.79:1 and 0.99:1, respectively, and corresponding values for P. multocida were 1.12:1 and 1.32:1. Serum protein binding of marbofloxacin was 49%, so that fraction unbound (fu) serum MIC values were significantly lower than those predicted by correction for protein binding; fu serum:broth MIC ratios were 0.40:1 (A. pleuropneumoniae) and 0.50:1 (P. multocida). For broth, MPC:MIC ratios were 13.7:1 (A. pleuropneumoniae) and 14.2:1 (P. multocida). Corresponding ratios for serum were similar, 17.2:1 and 18.8:1, respectively. It is suggested that, for dose prediction purposes, serum data might be preferable to potency indices measured in broths
Do wavelets really detect non-Gaussianity in the 4-year COBE data?
We investigate the detection of non-Gaussianity in the 4-year COBE data
reported by Pando, Valls-Gabaud & Fang (1998), using a technique based on the
discrete wavelet transform. Their analysis was performed on the two DMR faces
centred on the North and South Galactic poles respectively, using the
Daubechies 4 wavelet basis. We show that these results depend critically on the
orientation of the data, and so should be treated with caution. For two
distinct orientations of the data, we calculate unbiased estimates of the
skewness, kurtosis and scale-scale correlation of the corresponding wavelet
coefficients in all of the available scale domains of the transform. We obtain
several detections of non-Gaussianity in the DMR-DSMB map at greater than the
99 per cent confidence level, but most of these occur on pixel-pixel scales and
are therefore not cosmological in origin. Indeed, after removing all multipoles
beyond from the COBE maps, only one robust detection remains.
Moreover, using Monte-Carlo simulations, we find that the probability of
obtaining such a detection by chance is 0.59. We repeat the analysis for the
53+90 GHz coadded COBE map. In this case, after removing
multipoles, two non-Gaussian detections at the 99 per cent level remain.
Nevertheless, again using Monte-Carlo simulations, we find that the probability
of obtaining two such detections by chance is 0.28. Thus, we conclude the
wavelet technique does {\em not} yield strong evidence for non-Gaussianity of
cosmological origin in the 4-year COBE data.Comment: 7 pages, 5 figures. Revised version including discussion of
orientation sensitivity of the wavelet decomposition. MNRAS submitte
Separation of foregrounds from cosmic microwave background observations with the MAP satellite
Simulated observations of a 10\dg \times 10\dg field by the Microwave
Anisotropy Probe (MAP) are analysed in order to separate cosmic microwave
background (CMB) emission from foreground contaminants and instrumental noise
and thereby determine how accurately the CMB emission can be recovered. The
simulations include emission from the CMB, the kinetic and thermal
Sunyaev-Zel'dovich (SZ) effects from galaxy clusters, as well as Galactic dust,
free-free and synchrotron. We find that, even in the presence of these
contaminating foregrounds, the CMB map is reconstructed with an rms accuracy of
about 20 K per 12.6 arcmin pixel, which represents a substantial
improvement as compared to the individual temperature sensitivities of the raw
data channels. We also find, for the single 10\dg \times 10\dg field, that
the CMB power spectrum is accurately recovered for \ell \la 600.Comment: 7 pages, 7 figures, MNRAS submitte
Simulations of astronomical imaging phased arrays
We describe a theoretical procedure for analyzing astronomical phased arrays
with overlapping beams, and apply the procedure to simulate a simple example.
We demonstrate the effect of overlapping beams on the number of degrees of
freedom of the array, and on the ability of the array to recover a source. We
show that the best images are obtained using overlapping beams, contrary to
common practise, and show how the dynamic range of a phased array directly
affects the image quality.Comment: 16 pages, 26 figures, submitted to Journal of the Optical Society of
America
Optical Physics of Imaging and Interferometric Phased Arrays
Microwave, submillimetre-wave, and far-infrared phased arrays are of
considerable importance for astronomy. We consider the behaviour imaging phased
arrays and interferometric phased arrays from a functional perspective. It is
shown that the average powers, field correlations, power fluctuations, and
correlations between power fluctuations at the output ports of an imaging or
interferometric phased array can be found once the synthesised reception
patterns are known. The reception patterns do not have to be orthogonal or even
linearly independent. It is shown that the operation of phased arrays is
intimately related to the mathematical theory of frames, and that the theory of
frames can be used to determine the degree to which any class of intensity or
field distribution can be reconstructed unambiguously from the complex
amplitudes of the travelling waves at the output ports. The theory can be used
to set up a likelihood function that can, through Fisher information, be used
to determine the degree to which a phased array can be used to recover the
parameters of a parameterised source. For example, it would be possible to
explore the way in which a system, perhaps interferometric, might observe two
widely separated regions of the sky simultaneously
- …