6,367 research outputs found
Bayes-X: a Bayesian inference tool for the analysis of X-ray observations of galaxy clusters
We present the first public release of our Bayesian inference tool, Bayes-X,
for the analysis of X-ray observations of galaxy clusters. We illustrate the
use of Bayes-X by analysing a set of four simulated clusters at z=0.2-0.9 as
they would be observed by a Chandra-like X-ray observatory. In both the
simulations and the analysis pipeline we assume that the dark matter density
follows a spherically-symmetric Navarro, Frenk and White (NFW) profile and that
the gas pressure is described by a generalised NFW (GNFW) profile. We then
perform four sets of analyses. By numerically exploring the joint probability
distribution of the cluster parameters given simulated Chandra-like data, we
show that the model and analysis technique can robustly return the simulated
cluster input quantities, constrain the cluster physical parameters and reveal
the degeneracies among the model parameters and cluster physical parameters. We
then analyse Chandra data on the nearby cluster, A262, and derive the cluster
physical profiles. To illustrate the performance of the Bayesian model
selection, we also carried out analyses assuming an Einasto profile for the
matter density and calculated the Bayes factor. The results of the model
selection analyses for the simulated data favour the NFW model as expected.
However, we find that the Einasto profile is preferred in the analysis of A262.
The Bayes-X software, which is implemented in Fortran 90, is available at
http://www.mrao.cam.ac.uk/facilities/software/bayesx/.Comment: 22 pages, 11 figure
Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data
A flexible maximum-entropy component separation algorithm is presented that
accommodates anisotropic noise, incomplete sky-coverage and uncertainties in
the spectral parameters of foregrounds. The capabilities of the method are
determined by first applying it to simulated spherical microwave data sets
emulating the COBE-DMR, COBE-DIRBE and Haslam surveys. Using these simulations
we find that is very difficult to determine unambiguously the spectral
parameters of the galactic components for this data set due to their high level
of noise. Nevertheless, we show that is possible to find a robust CMB
reconstruction, especially at the high galactic latitude. The method is then
applied to these real data sets to obtain reconstructions of the CMB component
and galactic foreground emission over the whole sky. The best reconstructions
are found for values of the spectral parameters: T_d=19 K, alpha_d=2,
beta_ff=-0.19 and beta_syn=-0.8. The CMB map has been recovered with an
estimated statistical error of \sim 22 muK on an angular scale of 7 degrees
outside the galactic cut whereas the low galactic latitude region presents
contamination from the foreground emissions.Comment: 29 pages, 25 figures, version accepted for publication in MNRAS. One
subsection and 6 figures added. Main results unchange
Recommended from our members
HoloCam: A subsea holographic camera for recording marine organisms and particles
The HoloCam system is a major component of a multi-national multi-discipline project known as HoloMar (funded by the European Commission under the MAST III initiative). The project is concerned with the development of pulsed laser holography to analyse and monitor the populations of living organisms and inanimate particles within the world's oceans. We describe here the development, construction and evaluation of a prototype underwater camera, the purpose of which is to record marine organisms and particles, in-situ. Recording using holography provides several advantages over conventional sampling methods in that it allows non-intrusive, non-destructive, high-resolution imaging of large volumes (up to 10^5 cm^3) in three dimensions. The camera incorporates both in-line and off-axis holographic techniques, which allows particles from a few micrometres to tens of centimetres to be captured. In tandem with development of the HoloCam, a dedicated holographic replay system and an automated data extraction and image processing facility are being developed. These will allow, optimisation of the images recorded by the camera, identification of species and particle concentration plotting
Testing the Gaussianity of the COBE-DMR data with spherical wavelets
We investigate the Gaussianity of the 4-year COBE-DMR data (in HEALPix
pixelisation) using an analysis based on spherical Haar wavelets. We use all
the pixels lying outside the Galactic cut and compute the skewness, kurtosis
and scale-scale correlation spectra for the wavelet coefficients at each scale.
We also take into account the sensitivity of the method to the orientation of
the input signal. We find a detection of non-Gaussianity at per cent
level in just one of our statistics. Taking into account the total number of
statistics computed, we estimate that the probability of obtaining such a
detection by chance for an underlying Gaussian field is 0.69. Therefore, we
conclude that the spherical wavelet technique shows no strong evidence of
non-Gaussianity in the COBE-DMR data.Comment: latex file 7 pages, 6 figures, submitted to MNRA
Cosmology from Cluster SZ and Weak Lensing Data
Weak gravitational lensing and the Sunyaev-Zel'dovich effect provide
complementary information on the composition of clusters of galaxies.
Preliminary results from cluster SZ observations with the Very Small Array are
presented. A Bayesian approach to combining this data with wide field lensing
data is then outlined; this allows the relative probabilities of cluster models
of varying complexity to be computed. A simple simulation is used to
demonstrate the importance of cluster model selection in cosmological parameter
determination.Comment: 4 pages, 4 figures, to appear in proceedings of XXXVIIth Rencontres
de Moriond, "The Cosmological Model"; h-depebndence corrected, typos fixe
Teacher fabrication as an impediment to professional learning and development: the external mentor antidote
This paper reports findings from a study of the work of 'external mentors' associated with three programmes of support for the professional learning and development (PLD) of secondary science teachers in England. Focusing on outcomes from analyses of data derived from interviews with 47 mentees and 19 mentors, the paper supports and extends existing research on the construction and maintenance of fabrications in schools, and identifies omissions in the evidence base relating to teacher PLD. It is argued that the kinds of fabrications revealed by the teachers interviewed for this research present a serious impediment to their opportunities for school-based PLD, and that the deployment of external mentors (i.e. those not based in the same schools as the teachers they support) can provide a potentially powerful antidote to this. A number of implications for policy and practice in teacher professional learning and development are discussed. Amongst these, it is argued that more teachers should have the opportunity to access external support for their PLD, and that policy makers and head teachers should seek to reduce the degree to which teachers' 'performance' is observed, inspected and assessed
The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications
We provide calculations and theoretical arguments supporting the emission of
electromagnetic radiation from charged particles accelerated by gravitational
waves (GWs). These waves have significant indirect evidence to support their
existence, yet they interact weakly with ordinary matter. We show that the
induced oscillations of charged particles interacting with a GW, which lead to
the emission of electromagnetic radiation, will also result in wave
attenuation. These ideas are supported by a small body of literature, as well
as additional arguments for particle acceleration based on GW memory effects.
We derive order of magnitude power calculations for various initial charge
distributions accelerated by GWs. The resulting power emission is extremely
small for all but very strong GWs interacting with large quantities of charge.
If the results here are confirmed and supplemented, significant consequences
such as attenuation of early universe GWs could result. Additionally, this
effect could extend GW detection techniques into the electromagnetic regime.
These explorations are worthy of study to determine the presence of such
radiation, as it is extremely important to refine our theoretical framework in
an era of active GW astrophysics.Comment: Appears in Gravitational Wave Astrophysics, Editor C.F. Sopuerta,
Astrophysics and Space Science Proceedings, Volume 40. ISBN
978-3-319-10487-4. Springer International Publishing Switzerland, 2015, p.
30
Returning to an old question: What do television actors do when they act?
This article argues for acknowledging and exploring actors’ processes in critical considerations of television drama. Theatre Studies boasts a tradition of research privileging the actor, including a century’s worth of actor-training manuals, academic works observing rehearsals and performances, and actor accounts. However, such considerations within Television Studies are relatively nascent. Drawing upon continuing drama as a fertile case study for investigating the specificities of television acting, the article concludes that the only way to understand television acting is through the analysis of insights from actors themselves, in combination with the well-established practices of analysing the textual end-products of television acting
- …