6,367 research outputs found

    Bayes-X: a Bayesian inference tool for the analysis of X-ray observations of galaxy clusters

    Full text link
    We present the first public release of our Bayesian inference tool, Bayes-X, for the analysis of X-ray observations of galaxy clusters. We illustrate the use of Bayes-X by analysing a set of four simulated clusters at z=0.2-0.9 as they would be observed by a Chandra-like X-ray observatory. In both the simulations and the analysis pipeline we assume that the dark matter density follows a spherically-symmetric Navarro, Frenk and White (NFW) profile and that the gas pressure is described by a generalised NFW (GNFW) profile. We then perform four sets of analyses. By numerically exploring the joint probability distribution of the cluster parameters given simulated Chandra-like data, we show that the model and analysis technique can robustly return the simulated cluster input quantities, constrain the cluster physical parameters and reveal the degeneracies among the model parameters and cluster physical parameters. We then analyse Chandra data on the nearby cluster, A262, and derive the cluster physical profiles. To illustrate the performance of the Bayesian model selection, we also carried out analyses assuming an Einasto profile for the matter density and calculated the Bayes factor. The results of the model selection analyses for the simulated data favour the NFW model as expected. However, we find that the Einasto profile is preferred in the analysis of A262. The Bayes-X software, which is implemented in Fortran 90, is available at http://www.mrao.cam.ac.uk/facilities/software/bayesx/.Comment: 22 pages, 11 figure

    Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data

    Get PDF
    A flexible maximum-entropy component separation algorithm is presented that accommodates anisotropic noise, incomplete sky-coverage and uncertainties in the spectral parameters of foregrounds. The capabilities of the method are determined by first applying it to simulated spherical microwave data sets emulating the COBE-DMR, COBE-DIRBE and Haslam surveys. Using these simulations we find that is very difficult to determine unambiguously the spectral parameters of the galactic components for this data set due to their high level of noise. Nevertheless, we show that is possible to find a robust CMB reconstruction, especially at the high galactic latitude. The method is then applied to these real data sets to obtain reconstructions of the CMB component and galactic foreground emission over the whole sky. The best reconstructions are found for values of the spectral parameters: T_d=19 K, alpha_d=2, beta_ff=-0.19 and beta_syn=-0.8. The CMB map has been recovered with an estimated statistical error of \sim 22 muK on an angular scale of 7 degrees outside the galactic cut whereas the low galactic latitude region presents contamination from the foreground emissions.Comment: 29 pages, 25 figures, version accepted for publication in MNRAS. One subsection and 6 figures added. Main results unchange

    Testing the Gaussianity of the COBE-DMR data with spherical wavelets

    Full text link
    We investigate the Gaussianity of the 4-year COBE-DMR data (in HEALPix pixelisation) using an analysis based on spherical Haar wavelets. We use all the pixels lying outside the Galactic cut and compute the skewness, kurtosis and scale-scale correlation spectra for the wavelet coefficients at each scale. We also take into account the sensitivity of the method to the orientation of the input signal. We find a detection of non-Gaussianity at >99> 99 per cent level in just one of our statistics. Taking into account the total number of statistics computed, we estimate that the probability of obtaining such a detection by chance for an underlying Gaussian field is 0.69. Therefore, we conclude that the spherical wavelet technique shows no strong evidence of non-Gaussianity in the COBE-DMR data.Comment: latex file 7 pages, 6 figures, submitted to MNRA

    Cosmology from Cluster SZ and Weak Lensing Data

    Full text link
    Weak gravitational lensing and the Sunyaev-Zel'dovich effect provide complementary information on the composition of clusters of galaxies. Preliminary results from cluster SZ observations with the Very Small Array are presented. A Bayesian approach to combining this data with wide field lensing data is then outlined; this allows the relative probabilities of cluster models of varying complexity to be computed. A simple simulation is used to demonstrate the importance of cluster model selection in cosmological parameter determination.Comment: 4 pages, 4 figures, to appear in proceedings of XXXVIIth Rencontres de Moriond, "The Cosmological Model"; h-depebndence corrected, typos fixe

    Teacher fabrication as an impediment to professional learning and development: the external mentor antidote

    Get PDF
    This paper reports findings from a study of the work of 'external mentors' associated with three programmes of support for the professional learning and development (PLD) of secondary science teachers in England. Focusing on outcomes from analyses of data derived from interviews with 47 mentees and 19 mentors, the paper supports and extends existing research on the construction and maintenance of fabrications in schools, and identifies omissions in the evidence base relating to teacher PLD. It is argued that the kinds of fabrications revealed by the teachers interviewed for this research present a serious impediment to their opportunities for school-based PLD, and that the deployment of external mentors (i.e. those not based in the same schools as the teachers they support) can provide a potentially powerful antidote to this. A number of implications for policy and practice in teacher professional learning and development are discussed. Amongst these, it is argued that more teachers should have the opportunity to access external support for their PLD, and that policy makers and head teachers should seek to reduce the degree to which teachers' 'performance' is observed, inspected and assessed

    The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications

    Full text link
    We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection techniques into the electromagnetic regime. These explorations are worthy of study to determine the presence of such radiation, as it is extremely important to refine our theoretical framework in an era of active GW astrophysics.Comment: Appears in Gravitational Wave Astrophysics, Editor C.F. Sopuerta, Astrophysics and Space Science Proceedings, Volume 40. ISBN 978-3-319-10487-4. Springer International Publishing Switzerland, 2015, p. 30

    Returning to an old question: What do television actors do when they act?

    Get PDF
    This article argues for acknowledging and exploring actors’ processes in critical considerations of television drama. Theatre Studies boasts a tradition of research privileging the actor, including a century’s worth of actor-training manuals, academic works observing rehearsals and performances, and actor accounts. However, such considerations within Television Studies are relatively nascent. Drawing upon continuing drama as a fertile case study for investigating the specificities of television acting, the article concludes that the only way to understand television acting is through the analysis of insights from actors themselves, in combination with the well-established practices of analysing the textual end-products of television acting
    • …
    corecore