30 research outputs found

    Study of dynamic features of highly energetic reactions by DSC and High-Speed Temperature Scanner (HSTS)

    Get PDF
    The dynamic features of Al2O3 - polytetrafluoroethylene (PTFE) and Al - PTFE reactions in non-isothermal conditions are presented. The Differential Scanning Calorimetry (DSC) and High-Speed Temperature Scanner (HSTS) were used to characterize the Al2O3/Al – PTFE reactions at different heating rates. The study shows that the HSTS instrument can give more information about the reaction mechanism and kinetics than the conventional DSC measurements. In this work we show that high heating rates may reveal exothermic reaction between Al2O3 and PTFE that were previously unidentified. The PTFE can potentially remove the oxide layer from aluminum in the initial period of the reaction and increase the direct contact area between oxygen and aluminum, which increases the reaction velocity and improves the energy release abilities of the system

    A novel nano-energetic system based on bismuth hydroxide

    Get PDF
    We report the first study of gas generation and thermal wave behavior during the performance of a novel nano-energetic system based on aluminum and bismuth hydroxide Al–Bi(OH)3. Thermodynamic calculations demonstrate that this system is comparable to one of the most powerful known nanothermite systems, Al–Bi2O3, in terms of energy capacity per initial charge mass, and may generate more than twice the gaseous products: 0.0087 mol g1 . Differential scanning calorimetry analysis shows that homogenization of the as-received powder using mechanical activation is an essential step to reduce the decomposition energy of bismuth hydroxide by 30%. This results in nano-thermite with higher pressure discharge abilities. The mechanical activation with energy of 450–750 kJ g1 is enough to transform micro-meter sized particles to sub-micro and nano-sized particles. The resulting nanothermite generated a significant pressure discharge with a value of up to 5.6 kPa m3 g

    Slip-Jump Model for Carbon Combustion Synthesis of Complex Oxide Nanoparticles

    Get PDF
    Carbon Combustion Synthesis of Oxides (CCSO) is a promising method to produce submicron- and nano- sized complex oxides. The CCSO was successfully utilized for producing several complex oxides, a complete theoretical model including the sample porosity, fl ow parameters and reaction energetics is needed to predict the combustion parameters for CCSO. In this work, we studied the ignition temperature and combustion wave axial temperature distribution, activation energy, combustion heat and thermal losses for a typical CCSO synthesis for cylindrical samples of Ni-Zn ferrites with high (\u3e85%) porosity. We developed a two level combustion model of chemically active nano-dispersed mixture, using the experimentally measured ignition temperature and combustion parameter values utilizing the slipjump method for high Knudsen numbers. The theoretical predictions of highly porous samples when the flow resistivity is small and the gas can easily fl ow through the cylindrical sample are in good agreement with the experimental data. The calculation of combustion characteristics for the lower porosity values demonstrated that the surface combustion was dominated due to high gas flow resistivity of the sample. Finger combustion features were observed at this combustion mode

    Fabrication of Yttrium Ferrite Nanoparticles by Solution Combustion Synthesis

    Get PDF
    The ternary oxide system Y-Fe-O presents fascinating magnetic properties that are sensitive to the crystalline size of particles. There is a major challenge to fabricate these materials in nano-crystalline forms due to particle conglomeration during nucleation and synthesis. In this paper we report the fabrication of nano sized crystalline yttrium ferrite by solution combustion synthesis (SCS) where yttrium and iron nitrates were used as metal precursors with glycine as a fuel. The magnetic properties of the product can be selectively controlled by adjusting the ratio of glycine to metal nitrates. Yttrium ferrite nano-powder was obtained by using three concentration of glycine (3, 6 and 10 wt.%) in the initial exothermic mixture. Increasing glycine content was found to increase the reaction temperature of the system. The structural and magnetic properties of yttrium ferrite before and after annealing at temperature of 1000 °C were investigated by X-ray diffractometry, Differential Scanning Calorimetry (DSC) and cryogenic magnetometry (PPMS, Quantum Design). X-ray diffraction showed that, a broad diffraction peak was found for all samples indicating the amorphous nature of the product. Particle size and product morphology analysis identified that, Nitrate/ glycine combustion caused considerable gas evolution, mainly carbon dioxide, N2 and H2O vapor, which caused the synthesized powders to become friable and loosely agglomerated for glycine concentration from 3 wt.% up to 10 wt.%. The study of the magnetic properties of produced materials in a metastable state was performed by measuring dependencies of Magnetization (M) on temperature, and magnetization on magnetic field strength between 5 K and 300 K. Magnetization measurements on temperature zero-fieldcooled and field-cooled show different patterns when the fraction of glycine is increased. The analysis of zero-field-cooled (ZFC), field-cooled (FC) and magnetization curves of annealed samples confirmed that nanoparticles exhibit superparamagnetic behavior. The increasing concentration of glycine leads to an increased blocking temperature

    Charge and Discharge Behaviour of Li-Ion Batteries at Various Temperatures Containing LiCoO2 Nanostructured Cathode Produced by CCSO

    Get PDF
    There are technical barriers for penetration market requesting rechargeable lithium-ion battery packs for portable devices that operate in extreme hot and cold environments. Many portable electronics are used in very cold (-40 °C) environments, and many medical devices need batteries that operate at high temperatures. Conventional Li-ion batteries start to suffer as the temperature drops below 0 °C and the internal impedance of the battery increases. Battery capacity also reduced during the higher/lower temperatures. The present work describes the laboratory made lithium ion battery behaviour features at different operation temperatures. The pouch-type battery was prepared by exploiting LiCoO2 cathode material synthesized by novel synthetic approach referred as Carbon Combustion Synthesis of Oxides (CCSO). The main goal of this paper focuses on evaluation of the efficiency of positive electrode produced by CCSO method. Performance studies of battery showed that the capacity fade of pouch type battery increases with increase in temperature. The experimental results demonstrate the dramatic effects on cell self-heating upon electrochemical performance. The study involves an extensive analysis of discharge and charge characteristics of battery at each temperature following 30 cycles. After 10 cycles, the battery cycled at RT and 45 °C showed, the capacity fade of 20% and 25% respectively. The discharge capacity for the battery cycled at 25 °C was found to be higher when compared with the battery cycled at 0 °C and 45 °C. The capacity of the battery also decreases when cycling at low temperatures. It was important time to charge the battery was only 2.5 hours to obtain identical nominal capacity under the charging protocol. The decrease capability of battery cycled at high temperature can be explained with secondary active material loss dominating the other losses

    Laminar composite structures for high power actuators

    Get PDF
    Twisted laminar composite structures for high power and large-stroke actuators based on coiled Multi Wall Carbon Nanotube (MWNT) composite yarns were crafted by integrating high-density Nanoenergetic Gas Generators (NGGs) into carbon nanotube sheets. The linear actuation force, resulting from the pneumatic force caused by expanding gases confined within the pores of laminar structures and twisted carbon nanotube yarns, can be further amplified by increasing NGG loading and yarns twist density, as well as selecting NGG compositions with high energy density and large-volume gas generation. Moreover, the actuation force and power can be tuned by the surrounding environment, such as to increase the actuation by combustion in ambient air. A single 300-μm-diameter integrated MWNT/NGG coiled yarn produced 0.7 MPa stress and a contractile specific work power of up to 4.7 kW/kg, while combustion front propagated along the yarn at a velocity up to 10 m/s. Such powerful yarn actuators can also be operated in a vacuum, enabling their potential use for deploying heavy loads in outer space, such as to unfold solar panels and solar sails

    Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries

    Get PDF
    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about 15/kgwhereasthecosttomanufacturecarbonsootasaby−productfromlarge−scalemillingofabundantgraphiteisabout15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about 1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization. © 2014 Badi et al.; licensee Springer

    Computational and Experimental Study on Undoped and Er-Doped Lithium Tantalate Nanofluorescent Probes

    Get PDF
    We present a combined density functional theory (DFT) and experimental work on lithium tantalate LiTaO3 (LT) and its Er-doped counterparts. We calculate the electronic and optical properties for both LT and LT:Er+3, with Er occupying either Li or Ta sites, at 4.167 mol%. The generalized gradient approximation (GGA) calculations show that the Er-4 f bands appear closer to the conduction band bottom and to the valance band top, for the first and second doped configurations, respectively. This agrees with changes in the imaginary part of the frequency dependent dielectric function between the doped configurations. There are striking differences between the GGA and the hybrid functional HSE06 calculations for the band structures of the doped configurations. HSE06 accurately predicts the location in energy for all Er-4 f orbitals: These are now spread in energy and appear above and below the Fermi energy. We synthesized LT:Er+3 nanoparticles, validated through X-ray diffraction and Scanning Electron Microscopy. Differential scanning calorimetry and thermogravimetric analysis confirmed increases in the activation energy and lowering of the reaction temperature due to Er+3 doping. The LT:Er+3photoluminescence showed strong f–f emission in the visible and near-infrared regions, in an excellent agreement with the HSE06 electronic information

    Charge and Discharge Behaviour of Li-Ion Batteries at Various Temperatures Containing LiCoO2 Nanostructured Cathode Produced by CCSO

    Get PDF
    There are technical barriers for penetration market requesting rechargeable lithium-ion battery packs for portable devices that operate in extreme hot and cold environments. Many portable electronics are used in very cold (-40 °C) environments, and many medical devices need batteries that operate at high temperatures. Conventional Li-ion batteries start to suffer as the temperature drops below 0 °C and the internal impedance of the battery increases. Battery capacity also reduced during the higher/lower temperatures. The present work describes the laboratory made lithium ion battery behaviour features at different operation temperatures. The pouch-type battery was prepared by exploiting LiCoO2 cathode material synthesized by novel synthetic approach referred as Carbon Combustion Synthesis of Oxides (CCSO). The main goal of this paper focuses on evaluation of the efficiency of positive electrode produced by CCSO method. Performance studies of battery showed that the capacity fade of pouch type battery increases with increase in temperature. The experimental results demonstrate the dramatic effects on cell self-heating upon electrochemical performance. The study involves an extensive analysis of discharge and charge characteristics of battery at each temperature following 30 cycles. After 10 cycles, the battery cycled at RT and 45 °C showed, the capacity fade of 20% and 25% respectively. The discharge capacity for the battery cycled at 25 °C was found to be higher when compared with the battery cycled at 0 °C and 45 °C. The capacity of the battery also decreases when cycling at low temperatures. It was important time to charge the battery was only 2.5 hours to obtain identical nominal capacity under the charging protocol. The decrease capability of battery cycled at high temperature can be explained with secondary active material loss dominating the other losses
    corecore