89 research outputs found

    The domestication of SARS-CoV-2 into a seasonal infection by viral variants

    Get PDF
    IntroductionThe COVID-19 pandemic was caused by the zoonotic betacoronavirus SARS-CoV-2. SARS-CoV-2 variants have emerged due to adaptation in humans, shifting SARS-CoV-2 towards an endemic seasonal virus. We have termed this process β€˜virus domestication’.MethodsWe analyzed aggregate COVID-19 data from a publicly funded healthcare system in Canada from March 7, 2020 to November 21, 2022. We graphed surrogate calculations of COVID-19 disease severity and SARS-CoV-2 variant plaque sizes in tissue culture.Results and DiscussionMutations in SARS-CoV-2 adapt the virus to better infect humans and evade the host immune response, resulting in the emergence of variants with altered pathogenicity. We observed a decrease in COVID-19 disease severity surrogates after the arrival of the Delta variant, coinciding with significantly smaller plaque sizes. Overall, we suggest that SARS-CoV-2 has become more infectious and less virulent through viral domestication. Our findings highlight the importance of SARS-CoV-2 vaccination and help inform public policy on the highest probability outcomes during viral pandemics

    Gawky is a component of cytoplasmic mRNA processing bodies required for early Drosophila development

    Get PDF
    In mammalian cells, the GW182 protein localizes to cytoplasmic bodies implicated in the regulation of messenger RNA (mRNA) stability, translation, and the RNA interference pathway. Many of these functions have also been assigned to analogous yeast cytoplasmic mRNA processing bodies. We have characterized the single Drosophila melanogaster homologue of the human GW182 protein family, which we have named Gawky (GW). Drosophila GW localizes to punctate, cytoplasmic foci in an RNA-dependent manner. Drosophila GW bodies (GWBs) appear to function analogously to human GWBs, as human GW182 colocalizes with GW when expressed in Drosophila cells. The RNA-induced silencing complex component Argonaute2 and orthologues of LSm4 and Xrn1 (Pacman) associated with 5′–3β€² mRNA degradation localize to some GWBs. Reducing GW activity by mutation or antibody injection during syncytial embryo development leads to abnormal nuclear divisions, demonstrating an early requirement for GWB-mediated cytoplasmic mRNA regulation. This suggests that gw represents a previously unknown member of a small group of genes that need to be expressed zygotically during early embryo development

    Manipulation of Costimulatory Molecules by Intracellular Pathogens: Veni, Vidi, Vici!!

    Get PDF
    Some of the most successful pathogens of human, such as Mycobacterium tuberculosis (Mtb), HIV, and Leishmania donovani not only establish chronic infections but also remain a grave global threat. These pathogens have developed innovative strategies to evade immune responses such as antigenic shift and drift, interference with antigen processing/presentation, subversion of phagocytosis, induction of immune regulatory pathways, and manipulation of the costimulatory molecules. Costimulatory molecules expressed on the surface of various cells play a decisive role in the initiation and sustenance of immunity. Exploitation of the β€œcode of conduct” of costimulation pathways provides evolutionary incentive to the pathogens and thereby abates the functioning of the immune system. Here we review how Mtb, HIV, Leishmania sp., and other pathogens manipulate costimulatory molecules to establish chronic infection. Impairment by pathogens in the signaling events delivered by costimulatory molecules may be responsible for defective T-cell responses; consequently organisms grow unhindered in the host cells. This review summarizes the convergent devices that pathogens employ to tune and tame the immune system using costimulatory molecules. Studying host-pathogen interaction in context with costimulatory signals may unveil the molecular mechanism that will help in understanding the survival/death of the pathogens. We emphasize that the very same pathways can potentially be exploited to develop immunotherapeutic strategies to eliminate intracellular pathogens

    Tuberculosis and HIV Co-Infection

    Get PDF
    Tuberculosis (TB) and HIV co-infections place an immense burden on health care systems and pose particular diagnostic and therapeutic challenges. Infection with HIV is the most powerful known risk factor predisposing for Mycobacterium tuberculosis infection and progression to active disease, which increases the risk of latent TB reactivation 20-fold. TB is also the most common cause of AIDS-related death. Thus, M. tuberculosis and HIV act in synergy, accelerating the decline of immunological functions and leading to subsequent death if untreated. The mechanisms behind the breakdown of the immune defense of the co-infected individual are not well known. The aim of this review is to highlight immunological events that may accelerate the development of one of the two diseases in the presence of the co-infecting organism. We also review possible animal models for studies of the interaction of the two pathogens, and describe gaps in knowledge and needs for future studies to develop preventive measures against the two diseases

    Zika Virus and Host Interactions: From the Bench to the Bedside and Beyond

    No full text
    Before the emergence of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causative agent of the current COVID-19 (coronavirus disease 2019) pandemic [...

    The Rubella virus capsid is an anti-apoptotic protein that attenuates the pore-forming ability of Bax.

    Get PDF
    Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells

    Interactions between Rubella Virus Capsid and Host Protein p32 Are Important for Virus Replication

    No full text
    The distribution and morphology of mitochondria are dramatically affected during infection with rubella virus (RV). Expression of the capsid, in the absence of other viral proteins, was found to induce both perinuclear clustering of mitochondria and the formation of electron-dense intermitochondrial plaques, both hallmarks of RV-infected cells. We previously identified p32, a host cell mitochondrial matrix protein, as a capsid-binding protein. Here, we show that two clusters of arginine residues within capsid are required for stable binding to p32. Mutagenic ablation of the p32-binding site in capsid resulted in decreased mitochondrial clustering, indicating that interactions with this cellular protein are required for capsid-dependent reorganization of mitochondria. Recombinant viruses encoding arginine-to-alanine mutations in the p32-binding region of capsid exhibited altered plaque morphology and replicated to lower titers. Further analysis indicated that disruption of stable interactions between capsid and p32 was associated with decreased production of subgenomic RNA and, consequently, infected cells produced significantly lower amounts of viral structural proteins under these conditions. Together, these results suggest that capsid-p32 interactions are important for nonstructural functions of capsid that include regulation of virus RNA replication and reorganization of mitochondria during infection
    • …
    corecore