36 research outputs found

    Systematics of gastrointestinal nematodes of domestic ruminants: advances between 1992 and 1995 and proposals for future research

    Get PDF
    The Systematics of trichostrongyloid nematodes of ruminants provides a foundation for diagnostics and responds to the need to identify eggs in feces, free-living larvae from pastures or fecal cultures and larval or adult nematodes collected from hosts. These needs are associated with diagnostic problems or research projects. Difficulties in identifying all developmental stages of trichostrongyloid nematodes of domestic ruminants still severely limit the effective diagnosis and control of these parasites. Phylogentetic hypotheses as the basis for predictive classifications have been developed only for the subfamilies of the Trichostrongylidae. This report briefly describes recent progress in the development of improved tools for identification, phylogenetic analyses and predictive classifications. It also describes future research needed on the identification and classification of trichostronglyoid nematode parasites of domestic ruminants. Nematodes included are species of the superfamily Trichostrongloidea known to be important pathogens of domestic ruminants. The information summarized is presented by nematode developmental stage and by taxonomic groups. Eggs: While eggs of some trichostrongyloid nematode parasites of ruminants can be readily identified to their genus (Nematodirus), and some to species (e.g. Nematodirus battus), most of the important pathogens (including the Ostertagiinae and Haemonchinae) cannot be identified morphologically even to family level. However, DNA technology has been developed for determining not only the presence of specific pathogens in eggs from fecal samples, but also for estimating the percentage of the total eggs that each pathogens comprises. This new method will make possible a rapid determination of which individual animals in a herd should be treated. Larvae: The most commonly used method for identifying infective larvae is time-consuming (several weeks), unreliable for estimating intensities of individual species as components of mixed populations and requires highly-trained specialists. Available identification keys for larvae are not well illustrated and need to be augmented. Adults: Recent advances in the identifications of adult trichostronglyoids and their systematics are organized by taxonomic group. General included are Ostertagia, Haemonchus, Cooperia, Trichostrongylus and Nematodirus. Recently, the first phylogenetic analysis of the Trichostrongylidae family established monophyly for the family. A similar analysis of the Molineidae is needed. Ostertagia: Several studies of polymorphism summarized the phenomenon and listed 19 polymorphic species of Osteragiinae supported of DNA differences within and among polymorphic species of Ostertagiinae supported earlier hypotheses that the species pairs represent polymorphic species. A phylogenetic analysis of the Ostertagiinae and generic concepts are needed. Haemonchus: A key to three species of Haemonchus provides, for the first time, morphological characteristics for the microscopical identifucation to species of individual adult nematodes of either sex. The Food and Drug Administration is now requiring that results of drug trials included identification of Haemonchus to species. Cooperia: Studies using random amplified polymorphic DNA methods showed a high degree of variation within and among C. oncophora/ C. surnabada. but supported a polymorphic relationship for the species pair. A phylogenetic analysis of the Cooperiinae is needed. Trichostronglys: Restriction Fragment Lenght Polymorphisms (RFLPs) of genomic DNA polymorphism. However, other studies demonstrated expected species-level differences between T. colubriformis and T. vitrinus using Random Amplified Polymorphic DNA (RAPD) methods. Sequences of the second Internal Transcribed Spacer Region (ITS-2) ribosomal repeat showed sequence differences of 1.3-7.6% among five well-defined species of Trichostrongylus. This provides a standard for species-level differences within the Trichostrogylidae. Nematodirus: This origin of N. battus in the British Isles is still a mystery. Recently, DNA studies have provided evidence that populations on both coasts of the United States originated from Canada. A phylogenetic study of Nematodirus is in progress. Modern systematic methods have not yet been applied to the development of classifications for all subfamilies and most genera of the Trichostrongyloidea. Additional factors complicating these problems are a lack of knowledge of the parasites of wild bovids and cervids, the international transport of wild and domestic hosts and environmental changes that may alter the parasite fauna in a modern farm

    The Identification of Haemonchus Species and Diagnosis of Haemonchosis

    Get PDF
    Diagnosis is often equated with identification or detection when discussing parasitic diseases. Unfortunately, these are not necessarily mutually exclusive activities; diseases and infections are generally diagnosed and organisms are identified. Diagnosis is commonly predicated upon some clinical signs; in an effort to determine the causative agent, identification of genera and species is subsequently performed. Both identification and diagnosis play critical roles in managing an infection, and involve the interplay of direct and indirect methods of detection, particularly in light of the complex and expanding problem of drug-resistance in parasites. Accurate and authoritative identification that is cost- and time-effective, based on structural and molecular attributes of specimens, provides a foundation for defining parasite diversity and changing patterns of geographical distribution, host association and emergence of disease. Most techniques developed thus far have been grounded in assumptions based on strict host associations between Haemonchus contortus and small ruminants, that is, sheep and goats, and between Haemonchus placei and bovids. Current research and increasing empirical evidence of natural infections in the field demonstrates that this assumption misrepresents the host associations for these species of Haemonchus. Furthermore, the capacity of H. contortus to utilize a considerably broad spectrum of ungulate hosts is reflected in our understanding of the role of anthropogenic forcing, the ‘breakdown’ of ecological isolation, global introduction and host switching as determinants of dis- tribution. Nuanced insights about distribution, host association and epidemiology have emerged over the past 30 years, coincidently with the development of increasingly robust means for parasite identification. In this review and for the sake of argument, we would like to delineate the diagnosis of haemonchosis from the identification of the specific pathogen. As a foundation for exploring host and parasite biology, we will examine the evolution of methods for distinguishing H. contortus from other com- mon gastrointestinal nematodes of agriculturally significant and free-ranging wild ru- minants using morphological, molecular and/or immunological methods for studies at the species and genus level

    Trichinella britovi etiological agent of sylvatic trichinellosis in the Republic of Guinea (West Africa) and a re-evaluation of geographical distribution for encapsulated species in Africa

    Get PDF
    In West Africa, Trichinella infection was documented in humans and animals from Senegal in the 1960s, and the biological characters of one isolate showed a lower infectivity to domestic pigs and rodents when compared with that of a Trichinella spiralis pig isolate from Europe. To identify the Trichinella species present in West Africa, a survey was conducted in a total of 160 wild animals in the Republic of Guinea. Three Viverridae, one true civet (Viverra civetta) and two African palm civets (Nandinia binotata) from the Fouta Djallon Massif, Pilimini Subprefecture, were found positive by artificial digestion of muscle samples. Trichinella larvae from these three viverrids were identified as Trichinella britovi and no difference was detected in three examined sequences from these African isolates and the reference strain of T. britovi from Europe, indicating common ancestry, an historically continuous geographic distribution, and recent isolation for African and European populations. The detection of T. britovi in West Africa modifies our knowledge about the distribution of encapsulated species of Trichinella in Africa. Thus, Trichinella nelsoni is now considered to have a distribution limited to the Eastern part of the Afrotropical region from Kenya to South Africa. This provides a plausible explanation for the presence of Trichinella T8 in Namibia and South Africa, and further suggests that T. britovi could be the Trichinella species circulating among wild animals of Northern Africa

    Leveraging natural history biorepositories as a global, decentralized, pathogen surveillance network

    Get PDF
    The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic reveals a major gap in global biosecurity infrastructure: a lack of publicly available biological samples representative across space, time, and taxonomic diversity. The shortfall, in this case for vertebrates, prevents accurate and rapid identification and monitoring of emerging pathogens and their reservoir host(s) and precludes extended investigation of ecological, evolutionary, and environmental associations that lead to human infection or spillover. Natural history museum biorepositories form the backbone of a critically needed, decentralized, global network for zoonotic pathogen surveillance, yet this infrastructure remains marginally developed, underutilized, underfunded, and disconnected from public health initiatives. Proactive detection and mitigation for emerging infectious diseases (EIDs) requires expanded biodiversity infrastructure and training (particularly in biodiverse and lower income countries) and new communication pipelines that connect biorepositories and biomedical communities. To this end, we highlight a novel adaptation of Project ECHO’s virtual community of practice model: Museums and Emerging Pathogens in the Americas (MEPA). MEPA is a virtual network aimed at fostering communication, coordination, and collaborative problem-solving among pathogen researchers, public health officials, and biorepositories in the Americas. MEPA now acts as a model of effective international, interdisciplinary collaboration that can and should be replicated in other biodiversity hotspots. We encourage deposition of wildlife specimens and associated data with public biorepositories, regardless of original collection purpose, and urge biorepositories to embrace new specimen sources, types, and uses to maximize strategic growth and utility for EID research. Taxonomically, geographically, and temporally deep biorepository archives serve as the foundation of a proactive and increasingly predictive approach to zoonotic spillover, risk assessment, and threat mitigation

    PHYLO-ASP: Phylogenetic Systematics with Answer Set Programming

    Full text link
    This note summarizes the use of Answer Set Programming to solve various computational problems to infer phylogenetic trees and phylogenetic networks, and discusses its applicability and effectiveness on some real taxa

    Animal helminths in human archaeological remains: a review of zoonoses in the past

    Full text link

    Systematics of gastrointestinal nematodes of domestic ruminants: advances between 1992 and 1995 and proposals for future research

    Get PDF
    The Systematics of trichostrongyloid nematodes of ruminants provides a foundation for diagnostics and responds to the need to identify eggs in feces, free-living larvae from pastures or fecal cultures and larval or adult nematodes collected from hosts. These needs are associated with diagnostic problems or research projects. Difficulties in identifying all developmental stages of trichostrongyloid nematodes of domestic ruminants still severely limit the effective diagnosis and control of these parasites. Phylogentetic hypotheses as the basis for predictive classifications have been developed only for the subfamilies of the Trichostrongylidae. This report briefly describes recent progress in the development of improved tools for identification, phylogenetic analyses and predictive classifications. It also describes future research needed on the identification and classification of trichostronglyoid nematode parasites of domestic ruminants. Nematodes included are species of the superfamily Trichostrongloidea known to be important pathogens of domestic ruminants. The information summarized is presented by nematode developmental stage and by taxonomic groups. Eggs: While eggs of some trichostrongyloid nematode parasites of ruminants can be readily identified to their genus (Nematodirus), and some to species (e.g. Nematodirus battus), most of the important pathogens (including the Ostertagiinae and Haemonchinae) cannot be identified morphologically even to family level. However, DNA technology has been developed for determining not only the presence of specific pathogens in eggs from fecal samples, but also for estimating the percentage of the total eggs that each pathogens comprises. This new method will make possible a rapid determination of which individual animals in a herd should be treated. Larvae: The most commonly used method for identifying infective larvae is time-consuming (several weeks), unreliable for estimating intensities of individual species as components of mixed populations and requires highly-trained specialists. Available identification keys for larvae are not well illustrated and need to be augmented. Adults: Recent advances in the identifications of adult trichostronglyoids and their systematics are organized by taxonomic group. General included are Ostertagia, Haemonchus, Cooperia, Trichostrongylus and Nematodirus. Recently, the first phylogenetic analysis of the Trichostrongylidae family established monophyly for the family. A similar analysis of the Molineidae is needed. Ostertagia: Several studies of polymorphism summarized the phenomenon and listed 19 polymorphic species of Osteragiinae supported of DNA differences within and among polymorphic species of Ostertagiinae supported earlier hypotheses that the species pairs represent polymorphic species. A phylogenetic analysis of the Ostertagiinae and generic concepts are needed. Haemonchus: A key to three species of Haemonchus provides, for the first time, morphological characteristics for the microscopical identifucation to species of individual adult nematodes of either sex. The Food and Drug Administration is now requiring that results of drug trials included identification of Haemonchus to species. Cooperia: Studies using random amplified polymorphic DNA methods showed a high degree of variation within and among C. oncophora/ C. surnabada. but supported a polymorphic relationship for the species pair. A phylogenetic analysis of the Cooperiinae is needed. Trichostronglys: Restriction Fragment Lenght Polymorphisms (RFLPs) of genomic DNA polymorphism. However, other studies demonstrated expected species-level differences between T. colubriformis and T. vitrinus using Random Amplified Polymorphic DNA (RAPD) methods. Sequences of the second Internal Transcribed Spacer Region (ITS-2) ribosomal repeat showed sequence differences of 1.3-7.6% among five well-defined species of Trichostrongylus. This provides a standard for species-level differences within the Trichostrogylidae. Nematodirus: This origin of N. battus in the British Isles is still a mystery. Recently, DNA studies have provided evidence that populations on both coasts of the United States originated from Canada. A phylogenetic study of Nematodirus is in progress. Modern systematic methods have not yet been applied to the development of classifications for all subfamilies and most genera of the Trichostrongyloidea. Additional factors complicating these problems are a lack of knowledge of the parasites of wild bovids and cervids, the international transport of wild and domestic hosts and environmental changes that may alter the parasite fauna in a modern farm

    Trichinella britovi etiological agent of sylvatic trichinellosis in the Republic of Guinea (West Africa) and a re-evaluation of geographical distribution for encapsulated species in Africa

    Get PDF
    In West Africa, Trichinella infection was documented in humans and animals from Senegal in the 1960s, and the biological characters of one isolate showed a lower infectivity to domestic pigs and rodents when compared with that of a Trichinella spiralis pig isolate from Europe. To identify the Trichinella species present in West Africa, a survey was conducted in a total of 160 wild animals in the Republic of Guinea. Three Viverridae, one true civet (Viverra civetta) and two African palm civets (Nandinia binotata) from the Fouta Djallon Massif, Pilimini Subprefecture, were found positive by artificial digestion of muscle samples. Trichinella larvae from these three viverrids were identified as Trichinella britovi and no difference was detected in three examined sequences from these African isolates and the reference strain of T. britovi from Europe, indicating common ancestry, an historically continuous geographic distribution, and recent isolation for African and European populations. The detection of T. britovi in West Africa modifies our knowledge about the distribution of encapsulated species of Trichinella in Africa. Thus, Trichinella nelsoni is now considered to have a distribution limited to the Eastern part of the Afrotropical region from Kenya to South Africa. This provides a plausible explanation for the presence of Trichinella T8 in Namibia and South Africa, and further suggests that T. britovi could be the Trichinella species circulating among wild animals of Northern Africa
    corecore