72 research outputs found

    Discovery of serum biomarkers of alcoholic fatty liver in a rodent model: C-reactive protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive consumption of alcohol contributes to alcoholic liver disease. Fatty liver is the early stage of alcohol-related liver disease. The aim of this study was to search for specific serological biomarkers of alcoholic fatty liver (AFL) compared to healthy controls, non-alcoholic fatty liver (NAFL) and liver fibrosis in a rodent model.</p> <p>Methods</p> <p>Serum samples derived from animals with AFL, NAFL, or liver fibrosis were characterized and compared using two-dimensional differential gel electrophoresis. A matrix-assisted laser desorption ionization-time of flight tandem mass spectrometer in conjunction with mascot software was used for protein identification. Subsequently, Western blotting and flexible multi-analyte profiling were used to measure the expressions of the putative biomarkers present in the serum of animals and clinical patients.</p> <p>Results</p> <p>Eight differential putative biomarkers were identified, and the two most differentiated proteins, including upregulated C-reactive protein (CRP) and downregulated haptoglobin (Hp), were further investigated. Western blotting validated that CRP was dramatically higher in the serum of AFL compared to healthy controls and other animals with liver disease of NAFL or liver fibrosis (<it>p </it>< 0.05). Moreover, we found that CRP and Hp were both lower in liver fibrosis of TAA-induced rats and clinical hepatitis C virus-infected patients.</p> <p>Conclusion</p> <p>The results suggest that increased levels of CRP are an early sign of AFL in rats. The abnormally elevated CRP induced by ethanol can be used as a biomarker to distinguish AFL from normal or otherwise diseased livers.</p

    Automated Diagnosis of Cardiovascular Diseases from Cardiac Magnetic Resonance Imaging Using Deep Learning Models: A Review

    Full text link
    In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMR) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians due to many slices of data, low contrast, etc. To address these issues, deep learning (DL) techniques have been employed to the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. In the following, investigations to detect CVDs using CMR images and the most significant DL methods are presented. Another section discussed the challenges in diagnosing CVDs from CMR data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. The most important findings of this study are presented in the conclusion section

    Interseismic Deformation and Earthquake Hazard along the Southernmost Longitudinal Valley Fault, Eastern Taiwan

    Get PDF
    About half of the 8  cm/yr of oblique convergence across the active convergent plate boundaries of Taiwan occurs in eastern Taiwan, across the Longitudinal Valley. Significant shortening and left‐lateral slip occurs across the Longitudinal Valley fault there, both as shallow fault creep and as seismogenic fault slip. The southernmost Longitudinal Valley fault comprises an eastern Peinan strand and a western Luyeh strand. We derive an interseismic block model for these two strands using data from a small‐aperture Global Positioning System (GPS) campaign and leveling. The model provides estimates of fault slip rates and quantifies slip partitioning between the two strands. A 45  mm/yr dip‐slip rate on the northern Peinan strand diminishes southward, whereas the left‐lateral component increases. In contrast, nearly pure dip‐slip motion of about 20  mm/yr on the southern Luyeh strand diminishes northward to about 8  mm/yr and picks up a component of left‐lateral motion of about 15  mm/yr before it dies out altogether at its northern terminus. The Luyeh and the northern Peinan strands record near‐surface creep, but the southern Peinan strand appears locked. The potential earthquake magnitude for the two strands may be as high as M_w 6.5. We anticipate seismic rupture mainly on the locked portion of the Peinan strand

    Oct-4 Expression Maintained Cancer Stem-Like Properties in Lung Cancer-Derived CD133-Positive Cells

    Get PDF
    CD133 (prominin-1), a 5-transmembrane glycoprotein, has recently been considered to be an important marker that represents the subset population of cancer stem-like cells. Herein we report the isolation of CD133-positive cells (LC-CD133+) and CD133-negative cells (LC-CD133−) from tissue samples of ten patients with non-small cell lung cancer (LC) and five LC cell lines. LC-CD133+ displayed higher Oct-4 expressions with the ability to self-renew and may represent a reservoir with proliferative potential for generating lung cancer cells. Furthermore, LC-CD133+, unlike LC-CD133−, highly co-expressed the multiple drug-resistant marker ABCG2 and showed significant resistance to chemotherapy agents (i.e., cisplatin, etoposide, doxorubicin, and paclitaxel) and radiotherapy. The treatment of Oct-4 siRNA with lentiviral vector can specifically block the capability of LC-CD133+ to form spheres and can further facilitate LC-CD133+ to differentiate into LC-CD133−. In addition, knock-down of Oct-4 expression in LC-CD133+ can significantly inhibit the abilities of tumor invasion and colony formation, and increase apoptotic activities of caspase 3 and poly (ADP-ribose) polymerase (PARP). Finally, in vitro and in vivo studies further confirm that the treatment effect of chemoradiotherapy for LC-CD133+ can be improved by the treatment of Oct-4 siRNA. In conclusion, we demonstrated that Oct-4 expression plays a crucial role in maintaining the self-renewing, cancer stem-like, and chemoradioresistant properties of LC-CD133+. Future research is warranted regarding the up-regulated expression of Oct-4 in LC-CD133+ and malignant lung cancer

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P &lt; 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Etude 2D et 3D de la régénération osseuse à la surface et au sein de biomatériaux architecturés et ostéo-inductifs

    No full text
    To date, titanium-based alloys (Ti) remain the most used implantable materials for load-bearing applications. Emerging additive manufacturing techniques such as electron beam melting (EBM) enable to custom-build architectured scaffolds of controlled macroporosity. In very difficult clinical situations, potent bioactive signals are needed to boost stem cells: osteoinductive molecules such as bone morphogenetic proteins (BMP-2) are currently used for this purpose. However, one of their limitations is their inappropriate delivery with collagen sponges. Biomimetic surface coatings made of the biopolymers poly(L-lysine) and hyaluronic acid, (PLL/HA) polyelectrolyte films, have recently been engineered as nanoreservoirs for BMP proteins. The aim of this PhD thesis was to develop architectured and osteoinductive 3D titanium-based scaffolds as innovative synthetic bone grafts. To this end, we used the EBM additive manufacturing technique to engineer porous scaffolds with cubit unit-cells. Their surface was coated with biomimetic films containing the bone morphogenetic protein 7 (BMP-7). The porosity was well controlled with a difference from CAD models of less than 1%. The osteoinductive capacity of BMP-7 loaded films was assessed using murine mesenchymal stem cells (MSCs) by quantifying their alkaline phosphatase (ALP) expression, which increased in a dose-dependent manner. The coating of the 3D architectured scaffolds by the bioactive film was characterized using optical and electron microscopy techniques. Finally, the 3D architectured scaffolds coated with BMP-7-loaded films were proved to be osteoinductive at the early stage in vitro. Preliminary experiments are currently done to assess their performance in an in vivo model of a critical size femoral bone defect in rat.A l’heure actuelle, les alliages à bases de titane sont les matériaux les plus utilisés en implantologie osseuse. Les procédés émergents de fabrication additive, tel que la fusion par faisceau d’électrons (EBM), permettent de fabriquer des structures architecturées sur-mesure en titane. Dans les cas cliniques difficiles, il est nécessaire de stimuler activement les cellules souches osseuses pour qu’elles produisent de l’os. Les protéines osseuses morphogénétiques (BMP-2, BMP-7) ont cette capacité d’ostéo-induction et sont utilisées en clinique. Cependant, leur délivrance par matrice de collagène est très mal contrôlée. Des revêtements de surface à base de polymères naturels, tels que la poly(L-lysine) et l’acide hyaluronique (PLL/HA), peuvent former des films biomimétiques servant de nanoréservoir pour ces protéines. L’objectif de cette thèse était de développer un implant innovant constitué de structures 3D en titane à la fois architecturées et ostéo-inductrices. Pour cela, des structures 3D poreuses en alliage de titane (Ti-6Al-4V) constituées de cellules cubiques ont été construites par EBM. La porosité a été bien contrôlée avec une différence par rapport aux modèles CAO de moins de 1%. La BMP-7 a été chargée et quantifiée dans les films biomimétiques. La capacité d’ostéo-induction des films a été évaluée avec des cellules souches mésenchymateuses de souris par leur expression de la phosphatase alcaline. L’expression de cette enzyme a augmenté de façon dose-dépendante avec la dose de BMP-7 initialement chargée. Le dépôt du film ostéo-inducteur sur les structures 3D architecturées a été caractérisé par microscopies optique et électronique. Les cellules souches cultivées au sein des structures 3D bioactives se différencient en cellules osseuses démontrant ainsi leur capacité ostéo-inductrice sur le court terme in vitro. Des tests préliminaires in vivo sont actuellement réalisés pour tester ces structures 3D bioactives dans un modèle fémoral de défaut osseux chez le rat

    Bone regeneration into 3D architectured and osteoinductive titanium scaffolds

    No full text
    A l’heure actuelle, les alliages à bases de titane sont les matériaux les plus utilisés en implantologie osseuse. Les procédés émergents de fabrication additive, tel que la fusion par faisceau d’électrons (EBM), permettent de fabriquer des structures architecturées sur-mesure en titane. Dans les cas cliniques difficiles, il est nécessaire de stimuler activement les cellules souches osseuses pour qu’elles produisent de l’os. Les protéines osseuses morphogénétiques (BMP-2, BMP-7) ont cette capacité d’ostéo-induction et sont utilisées en clinique. Cependant, leur délivrance par matrice de collagène est très mal contrôlée. Des revêtements de surface à base de polymères naturels, tels que la poly(L-lysine) et l’acide hyaluronique (PLL/HA), peuvent former des films biomimétiques servant de nanoréservoir pour ces protéines. L’objectif de cette thèse était de développer un implant innovant constitué de structures 3D en titane à la fois architecturées et ostéo-inductrices. Pour cela, des structures 3D poreuses en alliage de titane (Ti-6Al-4V) constituées de cellules cubiques ont été construites par EBM. La porosité a été bien contrôlée avec une différence par rapport aux modèles CAO de moins de 1%. La BMP-7 a été chargée et quantifiée dans les films biomimétiques. La capacité d’ostéo-induction des films a été évaluée avec des cellules souches mésenchymateuses de souris par leur expression de la phosphatase alcaline. L’expression de cette enzyme a augmenté de façon dose-dépendante avec la dose de BMP-7 initialement chargée. Le dépôt du film ostéo-inducteur sur les structures 3D architecturées a été caractérisé par microscopies optique et électronique. Les cellules souches cultivées au sein des structures 3D bioactives se différencient en cellules osseuses démontrant ainsi leur capacité ostéo-inductrice sur le court terme in vitro. Des tests préliminaires in vivo sont actuellement réalisés pour tester ces structures 3D bioactives dans un modèle fémoral de défaut osseux chez le rat.To date, titanium-based alloys (Ti) remain the most used implantable materials for load-bearing applications. Emerging additive manufacturing techniques such as electron beam melting (EBM) enable to custom-build architectured scaffolds of controlled macroporosity. In very difficult clinical situations, potent bioactive signals are needed to boost stem cells: osteoinductive molecules such as bone morphogenetic proteins (BMP-2) are currently used for this purpose. However, one of their limitations is their inappropriate delivery with collagen sponges. Biomimetic surface coatings made of the biopolymers poly(L-lysine) and hyaluronic acid, (PLL/HA) polyelectrolyte films, have recently been engineered as nanoreservoirs for BMP proteins. The aim of this PhD thesis was to develop architectured and osteoinductive 3D titanium-based scaffolds as innovative synthetic bone grafts. To this end, we used the EBM additive manufacturing technique to engineer porous scaffolds with cubit unit-cells. Their surface was coated with biomimetic films containing the bone morphogenetic protein 7 (BMP-7). The porosity was well controlled with a difference from CAD models of less than 1%. The osteoinductive capacity of BMP-7 loaded films was assessed using murine mesenchymal stem cells (MSCs) by quantifying their alkaline phosphatase (ALP) expression, which increased in a dose-dependent manner. The coating of the 3D architectured scaffolds by the bioactive film was characterized using optical and electron microscopy techniques. Finally, the 3D architectured scaffolds coated with BMP-7-loaded films were proved to be osteoinductive at the early stage in vitro. Preliminary experiments are currently done to assess their performance in an in vivo model of a critical size femoral bone defect in rat

    Life of delinquent juveniles on screen

    No full text
    published_or_final_versionEducationMasterMaster of Science in Information Technology in Educatio
    corecore