109 research outputs found
Understanding the organic micropollutants transport mechanisms in the fertilizer-drawn forward osmosis process
© 2019 Elsevier Ltd We systematically investigated the transport mechanisms of organic micropollutants (OMPs) in a fertilizer-drawn forward osmosis (FDFO) membrane process. Four representative OMPs, i.e., atenolol, atrazine, primidone, and caffeine, were chosen for their different molecular weights and structural characteristics. All the FDFO experiments were conducted with the membrane active layer on the feed solution (FS) side using three different fertilizer draw solutions (DS): potassium chloride (KCl), monoammonium phosphate (MAP), and diammonium phosphate (DAP) due to their different properties (i.e., osmotic pressure, diffusivity, viscosity and solution pH). Using KCl as the DS resulted in both the highest water flux and the highest reverse solute flux (RSF), while MAP and DAP resulted in similar water fluxes with varying RSF. The pH of the FS increased with DAP as the DS due to the reverse diffusion of NH4+ ions from the DS toward the FS, while for MAP and DAP DS, the pH of the FS was not impacted. The OMPs transport behavior (OMPs flux) was evaluated and compared with a simulated OMPs flux obtained via the pore-hindrance transport model to identify the effects of the OMPs structural properties. When MAP was used as DS, the OMPs flux was dominantly influenced by the physicochemical properties (i.e., hydrophobicity and surface charge). Those OMPs with positive charge and more hydrophobic, exhibited higher forward OMP fluxes. With DAP as the DS, the more hydrated FO membrane (caused by increased pH) as well as the enhanced RSF hindered OMPs transport through the FO membrane. With KCl as DS, the structural properties of the OMPs were dominant factors in the OMPs flux, however the higher RSF of the KCl draw solute may likely hamper the OMPs transport through the membrane especially those with higher MW (e.g., atenolol). The pore-hindrance model can be instrumental in understanding the effects of the hydrodynamic properties and the surface properties on the OMPs transport behaviors
Investigation of pilot-scale 8040 FO membrane module under different operating conditions for brackish water desalination 2 3
Abstract 8 Two spiral wound forward osmosis (SWFO) membrane modules with different spacer design (CS; 9 corrugated spacer and MS; medium spacer) were investigated for the fertilizer drawn forward osmosis 10 desalination of brackish groundwater (BGW) at a pilot-scale level. This study mainly focused on 11 examining the influence of various operating conditions such as feed flow rate, total dissolved solids 12 (TDS) concentration of the BGW feed, and draw solution (DS) concentrations using ammonium 13 sulphate ((NH 4 ) 2 SO 4 , SOA) on the performance of two membrane modules. The feed flow rate played 14 a positive role in the average water flux of the pilot-scale FO membrane module due to enhanced 15 mass transfer coefficient across the membrane surface. Feed TDS and DS concentrations also played a 16 significant role in both FO membrane modules because they are directly related to the osmotic driving 17 force and membrane fouling tendency. CS module performed slightly better than MS module during 18 all experiments due to probably enhanced mass transfer and lower fouling propensity associated with 19 the corrugated spacer. Besides, CS spacer provides larger channel space that can accommodate larger 20 volume of DS and hence could maintain higher DS concentration. However, the extent of dilution for 21 the CS module is slightly lower. 22 2
In Situ-Generated Reactive Oxygen Species in Precharged Titania and Tungsten Trioxide Composite Catalyst Membrane Filters: Application to As(III) Oxidation in the Absence of Irradiation
This study demonstrates that in situ-generated reactive oxygen species (ROSs) in prephotocharged TiO₂ and WO₃ (TW) composite particle-embedded inorganic membrane filters oxidize arsenite (As(III)) into arsenate (As(V)) without any auxiliary chemical oxidants under ambient conditions in the dark. TW membrane filters have been charged with UV or simulated sunlight and subsequently transferred to a once-through flow-type system. The charged TW filters can transfer the stored electrons to dissolved O₂, producing ROSs that mediate As(III) oxidation in the dark. Dramatic inhibition of As(V) production with O₂ removal or addition of ROS quenchers indicates an ROS-mediated As(III) oxidation mechanism. Electron paramagnetic spectroscopic analysis has confirmed the formation of the HO₂•/O₂•– pair in the dark. The WO₃ fraction in the TW filter significantly influences the performance of the As(III) oxidation, while As(V) production is enhanced with increasing charging time and solution pH. The As(III) oxidation is terminated when the singly charged TW filter is fully discharged; however, recharging of TW recovers the catalytic activity for As(III) oxidation. The proposed oxidation process using charged TW membrane filters is practical and environmentally benign for the continuous treatment of As(III)-contaminated water during periods of unavailability of sunlight
In Situ-Generated Reactive Oxygen Species in Precharged Titania and Tungsten Trioxide Composite Catalyst Membrane Filters: Application to As(III) Oxidation in the Absence of Irradiation
This study demonstrates that in situ-generated reactive oxygen species (ROSs) in prephotocharged TiO₂ and WO₃ (TW) composite particle-embedded inorganic membrane filters oxidize arsenite (As(III)) into arsenate (As(V)) without any auxiliary chemical oxidants under ambient conditions in the dark. TW membrane filters have been charged with UV or simulated sunlight and subsequently transferred to a once-through flow-type system. The charged TW filters can transfer the stored electrons to dissolved O₂, producing ROSs that mediate As(III) oxidation in the dark. Dramatic inhibition of As(V) production with O₂ removal or addition of ROS quenchers indicates an ROS-mediated As(III) oxidation mechanism. Electron paramagnetic spectroscopic analysis has confirmed the formation of the HO₂•/O₂•– pair in the dark. The WO₃ fraction in the TW filter significantly influences the performance of the As(III) oxidation, while As(V) production is enhanced with increasing charging time and solution pH. The As(III) oxidation is terminated when the singly charged TW filter is fully discharged; however, recharging of TW recovers the catalytic activity for As(III) oxidation. The proposed oxidation process using charged TW membrane filters is practical and environmentally benign for the continuous treatment of As(III)-contaminated water during periods of unavailability of sunlight
Editorial: Special issue on the challenges in environmental science and engineering: CESE-2012 9-13 September 2012, RACV City Club, Melbourne, Australia
This special issue carries selected peer-reviewed manuscripts based on the presentations made at CESE-2012, the Fifth Annual International Conference on Challenges in Environmental Science & Engineering , CESE Conference Series that was held from the 9th to the 13th of September 2012 at the RACV City Club in Melbourne, Australia
Pyrite (FeS2)-supported ultrafiltration system for removal of mercury (II) from water
This study investigated the Hg(II) removal efficiencies of the reactive adsorbent membrane (RAM) hybrid filtration process, a removal process that produces stable final residuals. The reaction mechanism between Hg(II) and pyrite and the rejection of the solids over time were characterized with respect to flux decline, pH change, and Hg and Fe concentration in permeate water. Effects of the presence of anions (Cl−, SO42−, NO3−) or humic acid (HA) on the rejection of the Hg(II)-contacted pyrite were studied. The presence of both HA and Hg(II) increased the rate of flux decline due to the formation of irreversible gel-like compact cake layers as shown in the experimental data and modeling related to the flux decline and the SEM images. Stability experiments of the final residuals retained on the membrane using a thiosulfate solution (Na2S2O3) show that the Hg(II)-laden solids were very stable due to little or no detection of Hg(II) in the permeate water. Experiment on the possibility of continuously removing Hg(II) by reusing the Hg/pyrite-laden membrane shows that almost all Hg(II) was adsorbed onto the pyrite surface regardless of the presence of salts or HA, and the Hg(II)-contacted pyrite residuals were completely rejected by the DE/UF system. Therefore, a membrane filter containing pyrite-Hg(II) could provide another reactive cake layer capable of further removal of Hg(II) without post-chemical treatment for reuse.Qatar National Research Fund (QNRF) grant #NPRP 4–279-2–094
Evaluation of pretreatment and membrane configuration for pressure-retarded osmosis application to produced water from the petroleum industry
Pressure-retarded osmosis (PRO) is a promising membrane technology for harnessing the osmotic energy of saline solutions. PRO is typically considered with seawater/river water pairings however greater energy can be recovered from hypersaline solutions including produced water (PW) from the petroleum industry. One of the major challenges facing the utilization of hypersaline PW is its high fouling propensity on membranes. In this unique experimental evaluation, real PW from different sites was pretreated to varying degrees: i) minimal, ii) intermediate, and iii) extensive. The treated effluent was subsequently used for PRO testing and fouling rates were assessed for different membrane configurations over multiple cycles. Commercial grade flat sheet (FLS) coupons and novel hollow fiber (HF) modules were compared to validate the lower fouling propensity of HF membranes in PRO application. When minimally pretreated PW (10-micron cartridge filtration (CF)) was tested in FLS mode, severe membrane fouling occurred and the PRO flux decreased by 60%. In contrast, HF modules showed <1% flux decrease under both minimal and intermediate pretreatment schemes. Extensive pretreatment (1-micron CF, dissolved air flotation (DAF), powdered activated carbon, and microfiltration) reduced FLS PRO flux decline to <1%. These results confirm that PW can be treated to suitable levels for PRO application to avoid membrane fouling. Further validation of these pretreatment methods requires long term pilot testing and techno-economic assessment
Urine Treatment on the International Space Station: Current Practice and Novel Approaches
A reliable, robust, and resilient water recovery system is of paramount importance on board the International Space Station (ISS). Such a system must be able to treat all sources of water, thereby reducing resupply costs and allowing for longer-term space missions. As such, technologies able to dewater urine in microgravity have been investigated by different space agencies. However, despite over 50 years of research and advancements on water extraction from human urine, the Urine Processing Assembly (UPA) and the Water Processor Assembly (WPA) now operating on the ISS still achieve suboptimal water recovery rates and require periodic consumables resupply. Additionally, urine brine from the treatment is collected for disposal and not yet reused. These factors, combined with the need for a life support system capable of tolerating even dormant periods of up to one year, make the research in this field ever more critical. As such, in the last decade, extensive research was conducted on the adaptation of existing or emerging technologies for the ISS context. In virtue of having a strong chemical resistance, small footprint, tuneable selectivity and versatility, novel membrane-based processes have been in focus for treating human urine. Their hybridisation with thermal and biological processes as well as the combination with new nanomaterials have been particularly investigated. This article critically reviews the UPA and WPA processes currently in operation on the ISS, summarising the research directions and needs, highlighted by major space agencies, necessary for allowing life support for missions outside the Low Earth Orbit (LEO). Additionally, it reviews the technologies recently proposed to improve the performance of the system as well as new concepts to allow for the valorisation of the nutrients in urine or the brine after urine dewatering
A review on lithium recovery using electrochemical capturing systems
Resource recovery from natural reserves is appealing and Li extraction from different brines is in the forefront. Li extraction by membranes is reviewed in the literature much more than electrochemical processes. However, a very recent review thoroughly discussed Li recovery by electrochemically switchable ion exchange (ESIX). This paper reviews Li recovery by both charge transfer processes, namely electrodialysis (ED), and electro-sorption processes, namely capacitive deionization (CDI). It also reviews ESIX with a focus on performance matrices and includes comments on the technology readiness of each separation technique. These processes exhibit promising perspectives on the separation and recovery of Li both selectively and non-selectively from simulated brine solutions and Li salt solutions. Readers are provided with guidelines to choose between the processes, depending on the applied voltage, current density, specific energy consumption and purity of recovered Li. Most electrochemical lithium capturing systems (ELiCSs) have been tested at the lab scale. Therefore, future research should be directed toward pilot-scale development and parameter optimization. Furthermore, we urge the ELiCSs research community to report information in a standard form that allows meaningful comparisons and insights into the systems.This publication was made possible by NPRP grant # [NPRP12S-0227-190166] from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved are solely the responsibility of the authors. Open Access funding provided by the Qatar National Library
- …