4,452 research outputs found
Band Gap Closing in a Synthetic Hall Tube of Neutral Fermions
We report the experimental realization of a synthetic three-leg Hall tube
with ultracold fermionic atoms in a one-dimensional optical lattice. The legs
of the synthetic tube are composed of three hyperfine spin states of the atoms,
and the cyclic inter-leg links are generated by two-photon Raman transitions
between the spin states, resulting in a uniform gauge flux penetrating
each side plaquette of the tube. Using quench dynamics, we investigate the band
structure of the Hall tube system for a commensurate flux .
Momentum-resolved analysis of the quench dynamics reveals that a critical point
of band gap closing as one of the inter-leg coupling strengths is varied, which
is consistent with a topological phase transition predicted for the Hall tube
system.Comment: 8 pages, 8 figure
Public Opinions on Inter-Korean Economic Cooperation: A Survey Analysis
This research attempts to provide an in-depth analysis of the public perceptions of inter-Korean economic cooperation. KDI survey data with a sample size of 1,000 were subjected to empirical analyses. By means of ordered logit estimations, we derive the following results. First, there is a significant effect of age on economic cooperation perceptions, where younger generations tend to be more negative. Second, the group who has positive view on the economic cooperation tends to prefer large-scale, domestic-entity-funded cooperation projects, whereas the group who has negative view tends to prefer small-scale projects and projects funded by international organizations. According to these results, prioritizing trade with the involvement of international organizations is likely to be an effective measure to alleviate potential political constraints and to achieve sustainable long-run economic cooperation systems when pursuing the economic cooperation
Protein kinase CK2 phosphorylates and activates p21-activated kinase 1
Activation of the p21-activated kinase 1 (PAK1) is achieved through a conformational change that converts an inactive PAK1 dimer to an active monomer. In this paper, we show that this change is necessary but not sufficient to activate PAK1 and that it is, rather, required for CK2-dependent PAK1S223 phosphorylation that converts a monomeric PAK1 into a catalytically active form. This phosphorylation appears to be essential for autophosphorylation at specific residues and overall activity of PAK1. A phosphomimetic mutation (S223E) bypasses the requirement for GTPases in PAK1 activation, whereas the constitutive activity of the PAK1 mutant (PAK1H83,86L), postulated to mimic GTPase-induced structural changes, is abolished by inhibition of S223 phosphorylation. Thus, S223 is likely accessible to CK2 upon conformational changes of PAK1 induced by GTPase-dependent and GTPase-independent stimuli, suggesting that S223 phosphorylation may play a key role in the final step of the PAK1 activation process. The physiological significance of this phosphorylation is reinforced by the observations that CK2 is responsible for epidermal growth factor–induced PAK1 activation and that inhibition of S223 phosphorylation abrogates PAK1-mediated malignant transformation of prostate epithelial cells. Taken together, these findings identify CK2 as an upstream activating kinase of PAK1, providing a novel mechanism for PAK1 activation
Double resonance of Raman transitions in a degenerate Fermi gas
We measure momentum-resolved Raman spectra of a spin-polarized degenerate
Fermi gas of Yb atoms for a wide range of magnetic fields, where the
atoms are irradiated by a pair of counterpropagating Raman laser beams as in
the conventional spin-orbit coupling scheme. Double resonance of first- and
second-order Raman transitions occurs at a certain magnetic field and the
spectrum exhibits a doublet splitting for high laser intensities. The measured
spectral splitting is quantitatively accounted for by the Autler-Townes effect.
We show that our measurement results are consistent with the spinful band
structure of a Fermi gas in the spatially oscillating effective magnetic field
generated by the Raman laser fields.Comment: 7 pages, 6 figure
The Role of the Pleckstrin Homology Domain-Containing Protein CKIP-1 in Activation of p21-activated Kinase 1 (PAK1)
Upon growth factor stimulation, PAK1 is recruited to the plasma membrane and activated by a mechanism that requires its phosphorylation at S223 by the protein kinase CK2. However, the upstream signaling molecules that regulate this phosphorylation event are not clearly defined. Here, we demonstrate a major role of the CK2α-interacting protein CKIP-1 in activation of PAK1. CK2α, CKIP-1 and PAK1 are translocated to membrane ruffles in response to the epidermal growth factor (EGF), where CKIP-1 mediates the interaction between CK2α, and PAK1 in a PI3K-dependent manner. Consistently, we observe that PAK1 mediates phosphorylation and modulation of the activity of p41-Arc, one of its plasma membrane substrate, in a fashion that requires PI3K and CKIP-1. Moreover, CKIP-1 knockdown or PI3K inhibition suppresses PAK1-mediated cell migration and invasion, demonstrating the physiological significance of the PI3K-CKIP-1-CK2α-PAK1 signaling pathway. Taken together, these findings identify a novel mechanism for the activation of PAK1 at the plasma membrane, which is critical for cell migration and invasion
Creutz ladder in a resonantly shaken 1D optical lattice
We report the experimental realization of a Creutz ladder for ultracold fermionic atoms in a resonantly driven 1D optical lattice. The two-leg ladder consists of the two lowest orbital states of the optical lattice and the cross inter-leg links are generated via two-photon resonant coupling between the orbitals by periodic lattice shaking. The characteristic pseudo-spin winding structure in the energy bands of the ladder system is demonstrated using momentum-resolved Ramsey-type interferometric measurements. We discuss a two-tone driving method to extend the inter-leg link control and propose a topological charge pumping scheme for the Creutz ladder system. ©2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaf
Realization of a cross-linked chiral ladder with neutral fermions in an optical lattice by orbital-momentum coupling
We report the experimental realization of a cross-linked chiral ladder with
ultracold fermionic atoms in an optical lattice. In the ladder, the legs are
formed by the orbital states of the optical lattice and the complex inter-leg
links are generated by the orbital-changing Raman transitions that are driven
by a moving lattice potential superimposed onto the optical lattice. The
effective magnetic flux per ladder plaquette is tuned by the spatial
periodicity of the moving lattice, and the chiral currents are observed from
the asymmetric momentum distributions of the orbitals. The effect of the
complex cross links is demonstrated in quench dynamics by measuring the
momentum dependence of the inter-orbital coupling strength. We discuss the
topological phase transition of the chiral ladder system for the variations of
the complex cross links.Comment: 8 pages, 8 figure
Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6-Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1
Glucose uptake, the first, rate-limiting step of its utilization, is facilitated by glucose transporters. Expression of several glucose transporter (HXT) genes in yeast is repressed by the Rgt1 repressor, which recruits the glucose-responsive transcription factor Mth1 and the general corepressor complex Ssn6-Tup1 in the absence of glucose; however, it is derepressed when Mth1 is inactivated by glucose. Here we show that Ssn6-Tup1 interferes with the DNA-binding ability of Rgt1 in the absence of Mth1 and that the Rgt1 function abrogated by Ssn6 overexpression is restored by co-overexpression of Mth1. Thus Mth1 likely regulates Rgt1 function not by modulating its DNA-binding activity directly but by functionally antagonizing Ssn6-Tup1. Mth1 does so by acting as a scaffold-like protein to recruit Ssn6-Tup1 to Rgt1. Supporting evidence shows that Mth1 blocks the protein kinase A–dependent phosphorylation of Rgt1 that impairs the ability of Rgt1 to interact with Ssn6-Tup1. Of note, Rgt1 can bind DNA in the absence of Ssn6-Tup1 but does not inhibit transcription, suggesting that dissociation of Rgt1 from Ssn6-Tup1, but not from DNA, is necessary and sufficient for the expression of its target genes. Taken together, these findings show that Mth1 is a transcriptional corepressor that facilitates the recruitment of Ssn6-Tup1 by Rgt1
- …