19,255 research outputs found
Recommended from our members
Robust filtering under randomly varying sensor delay with variance constraints
Copyright [2004] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper deals with a new filtering problem for linear uncertain discrete-time stochastic systems with randomly varying sensor delay. The norm-bounded parameter uncertainties enter into the system matrix of the state space model. The system measurements are subject to randomly varying sensor delays, which often occur in information transmissions through networks. The problem addressed is the design of a linear filter such that, for all admissible parameter uncertainties and all probabilistic sensor delays, the error state of the filtering process is mean square bounded, and the steady-state variance of the estimation error for each state is not more than the individual prescribed upper bound. We show that the filtering problem under consideration can effectively be solved if there are positive definite solutions to a couple of algebraic Riccati-like inequalities or linear matrix inequalities. We also characterize the set of desired robust filters in terms of some free parameters. An illustrative numerical example is used to demonstrate the usefulness and flexibility of the proposed design approach
Variance-constrained filtering for uncertain stochastic systems with missing measurements
Copyright [2003] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this note, we consider a new filtering problem for linear uncertain discrete-time stochastic systems with missing measurements. The parameter uncertainties are allowed to be norm-bounded and enter into the state matrix. The system measurements may be unavailable (i.e., missing data) at any sample time, and the probability of the occurrence of missing data is assumed to be known. The purpose of this problem is to design a linear filter such that, for all admissible parameter uncertainties and all possible incomplete observations, the error state of the filtering process is mean square bounded, and the steady-state variance of the estimation error of each state is not more than the individual prescribed upper bound. It is shown that, the addressed filtering problem can effectively be solved in terms of the solutions of a couple of algebraic Riccati-like inequalities or linear matrix inequalities. The explicit expression of the desired robust filters is parameterized, and an illustrative numerical example is provided to demonstrate the usefulness and flexibility of the proposed design approach
Recommended from our members
A note on the robust stability of uncertain stochastic fuzzy systems with time-delays
Copyright [2004] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Takagi-Sugeno (T-S) fuzzy models are now often used to describe complex nonlinear systems in terms of fuzzy sets and fuzzy reasoning applied to a set of linear submodels. In this note, the T-S fuzzy model approach is exploited to establish stability criteria for a class of nonlinear stochastic systems with time delay. Sufficient conditions are derived in the format of linear matrix inequalities (LMIs), such that for all admissible parameter uncertainties, the overall fuzzy system is stochastically exponentially stable in the mean square, independent of the time delay. Therefore, with the numerically attractive Matlab LMI toolbox, the robust stability of the uncertain stochastic fuzzy systems with time delays can be easily checked
Recommended from our members
State estimation for delayed neural networks
Copyright [2005] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this letter, the state estimation problem is studied for neural networks with time-varying delays. The interconnection matrix and the activation functions are assumed to be norm-bounded. The problem addressed is to estimate the neuron states, through available output measurements, such that for all admissible time-delays, the dynamics of the estimation error is globally exponentially stable. An effective linear matrix inequality approach is developed to solve the neuron state estimation problem. In particular, we derive the conditions for the existence of the desired estimators for the delayed neural networks. We also parameterize the explicit expression of the set of desired estimators in terms of linear matrix inequalities (LMIs). Finally, it is shown that the main results can be easily extended to cope with the traditional stability analysis problem for delayed neural networks. Numerical examples are included to illustrate the applicability of the proposed design method
Robust Hâ control for networked systems with random packet losses
Copyright [2007] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the robust Hinfin control problem Is considered for a class of networked systems with random communication packet losses. Because of the limited bandwidth of the channels, such random packet losses could occur, simultaneously, in the communication channels from the sensor to the controller and from the controller to the actuator. The random packet loss is assumed to obey the Bernoulli random binary distribution, and the parameter uncertainties are norm-bounded and enter into both the system and output matrices. In the presence of random packet losses, an observer-based feedback controller is designed to robustly exponentially stabilize the networked system in the sense of mean square and also achieve the prescribed Hinfin disturbance-rejection-attenuation level. Both the stability-analysis and controller-synthesis problems are thoroughly investigated. It is shown that the controller-design problem under consideration is solvable if certain linear matrix inequalities (LMIs) are feasible. A simulation example is exploited to demonstrate the effectiveness of the proposed LMI approach
Recommended from our members
Robust H2 filtering for a class of systems with stochastic nonlinearities
Copyright [2006] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper addresses the robust H2 filtering problem for a class of uncertain discrete-time nonlinear stochastic systems. The nonlinearities described by statistical means in this paper comprise some well-studied classes of nonlinearities in the literature. A technique is developed to tackle the matrix trace terms resulting from the nonlinearities, and the well-known S-procedure technique is adopted to cope with the uncertainties. A unified framework is established to solve the addressed robust H2 filtering problem by using a linear matrix inequality approach. A numerical example is provided to illustrate the usefulness of the proposed method
Micromachined membrane particle filters
We report here several particle membrane filters (8 x 8 mm^2) with circular, hexagonal and rectangular through holes. By varying hole dimensions from 6 to 12 pm, opening factors from 4 to 45 % are achieved. In order to improve the filter robustness, a composite silicon nitride/Parylene membrane technology is developed. More importantly, fluid dynamic performance of the filters is also studied by both experiments and numerical simulations. It is found that the gaseous flow through the filters depends strongly on opening factors, and the measured pressure drops are much lower than that from numerical simulation using the Navier-Stokes equation. Interestingly, surface velocity slip can only account for a minor part of the discrepancy. This suggests that a very interesting topic for micro fluid mechanics research is identified
Quantum Hall Ferromagnets
It is pointed out recently that the quantum Hall states in bilayer
systems behave like easy plane quantum ferromagnets. We study the
magnetotransport of these systems using their ``ferromagnetic" properties and a
novel spin-charge relation of their excitations. The general transport is a
combination of the ususal Hall transport and a time dependent transport with
time average. The latter is due to a phase slippage process in
and is characterized by two topological constants. (Figures will be
provided upon requests).Comment: 4 pages, Revtex, Ohio State Universit
- âŚ