23 research outputs found

    A New and Simple Practical Plane Dividing Hepatic Segment 2 and 3 of the Liver: Evaluation of Its Validity

    Get PDF
    OBJECTIVE: The conventional method of dividing hepatic segment 2 (S2) and 3 (S3) is subjective and CT interpretation is unclear. The purpose of our study was to test the validity of our hypothesis that the actual plane dividing S2 and S3 is a vertical plane of equal distance from the S2 and S3 portal veins in clinical situations. MATERIALS AND METHODS: We prospectively performed thin-section iodized-oil CT immediately after segmental chemoembolization of S2 or S3 in 27 consecutive patients and measured the angle of intersegmental plane on sagittal multiplanar reformation (MPR) images to verify its vertical nature. Our hypothetical plane dividing S2 and S3 is vertical and equidistant from the S2 and S3 portal veins (vertical method). To clinically validate this, we retrospectively collected 102 patients with small solitary hepatocellular carcinomas (HCC) on S2 or S3 the segmental location of which was confirmed angiographically. Two reviewers predicted the segmental location of each tumor at CT using the vertical method independently in blind trials. The agreement between CT interpretation and angiographic results was analyzed with Kappa values. We also compared the vertical method with the horizontal one. RESULTS: In MPR images, the average angle of the intersegmental plane was slanted 15 degrees anteriorly from the vertical plane. In predicting the segmental location of small HCC with the vertical method, the Kappa value between CT interpretation and angiographic result was 0.838 for reviewer 1 and 0.756 for reviewer 2. Inter-observer agreement was 0.918. The vertical method was superior to the horizontal method for localization of HCC in the left lobe (p < 0.0001 for reviewers 1 and 2). CONCLUSION: The proposed vertical plane equidistant from S2 and S3 portal vein is simple to use and useful for dividing S2 and S3 of the liver

    Specific and Shared Targets of Ephrin A Signaling in Epidermal Keratinocytes*

    Full text link
    Both ephrins (EFNs) and their receptors (Ephs) are membrane-bound, restricting their interactions to the sites of direct cell-to-cell interfaces. They are widely expressed, often co-expressed, and regulate developmental processes, cell adhesion, motility, survival, proliferation, and differentiation. Both tumor suppressor and oncogene activities are ascribed to EFNs and Ephs in various contexts. A major conundrum regarding the EFN/Eph system concerns their large number and functional redundancy given the promiscuous cross-activation of ligands and receptors and the overlapping intracellular signaling pathways. To address this issue, we treated human epidermal keratinocytes with five EFNAs individually and defined the transcriptional responses in the cells. We found that a large set of genes is coregulated by all EFNAs. However, although the responses to EFNA3, EFNA4, and EFNA5 are identical, the responses to EFNA1 and EFNA2 are characteristic and distinctive. All EFNAs induce epidermal differentiation markers and suppress cell adhesion genes, especially integrins. Ontological analysis showed that all EFNAs induce cornification and keratin genes while suppressing wound healing-associated, signaling, receptor, and extracellular matrix-associated genes. Transcriptional targets of AP1 are selectively suppressed by EFNAs. EFNA1 and EFNA2, but not the EFNA3, EFNA4, EFNA5 cluster, regulate the members of the ubiquitin-associated proteolysis genes. EFNA1 specifically induces collagen production. Our results demonstrate that the EFN-Eph interactions in the epidermis, although promiscuous, are not redundant but specific. This suggests that different members of the EFN/Eph system have specific, clearly demarcated functions
    corecore