20,187 research outputs found

    Partial spin freezing in the quasi-two-dimensional La2(Cu,Li)O4

    Full text link
    In conventional spin glasses, the magnetic interaction is not strongly anisotropic and the entire spin system freezes at low temperature. In La2(Cu,Li)O4, for which the in-plane exchange interaction dominates the interplane one, only a fraction of spins with antiferromagnetic correlations extending to neighboring planes become spin-glass. The remaining spins with only in-plane antiferromagnetic correlations remain spin-liquid at low temperature. Such a novel partial spin freezing out of a spin-liquid observed in this cold neutron scattering study is likely due to a delicate balance between disorder and quantum fluctuations in the quasi-two dimensional S=1/2 Heisenberg system.Comment: 4 pages, 4 figure

    Two--Electron Atoms in Short Intense Laser Pulses

    Full text link
    We discuss a method of solving the time dependent Schrodinger equation for atoms with two active electrons in a strong laser field, which we used in a previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to calculate ionization, double excitation and harmonic generation in Helium by short laser pulses. The method employs complex scaling and an expansion in an explicitly correlated basis. Convergence of the calculations is documented and error estimates are provided. The results for Helium at peak intensities up to 10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly accurate calculations are presented for electron detachment and double excitation of the negative hydrogen ion.Comment: 14 pages, including figure

    Quasiparticles in the 111 state and its compressible ancestors

    Full text link
    We investigate the relationship of the spontaneously inter-layer coherent ``111''state of quantum Hall bilayers at total filling factor \nu=1 to ``mutual'' composite fermions, in which vortices in one layer are bound to electrons in the other. Pairing of the mutual composite fermions leads to the low-energy properties of the 111 state, as we explicitly demonstrate using field-theoretic techniques. Interpreting this relationship as a mechanism for inter-layer coherence leads naturally to two candidate states with non-quantized Hall conductance: the mutual composite Fermi liquid, and an inter-layer coherent charge e Wigner crystal. The experimental behavior of the interlayer tunneling conductance and resistivity tensors are discussed for these states.Comment: 4 Pages, RevTe

    Dual neutral variables and knot solitons in triplet superconductors

    Full text link
    In this paper we derive a dual presentation of free energy functional for spin-triplet superconductors in terms of gauge-invariant variables. The resulting equivalent model in ferromagnetic phase has a form of a version of the Faddeev model. This allows one in particular to conclude that spin-triplet superconductors allow formation of stable finite-length closed vortices (the knotted solitons).Comment: Replaced with version published in PRL (added a discussion of the effect of the coupling of the fields {\vec s} and {\vec C} on knot stability). Latest updates of the paper and miscellaneous links related to knotted solitons are also available at the homepage of the author http://www.teorfys.uu.se/PEOPLE/egor/ . Animations of knotted solitons by Hietarinta and Salo are available at http://users.utu.fi/h/hietarin/knots/c45_p2.mp

    Betel quid chewing as a risk factor for hepatocellular carcinoma: a case-control study

    Get PDF
    The role of betel quid chewing in the aetiology of hepatocellular carcinoma (HCC) was evaluated in a case–control study including 263 pairs of age- and sex-matched HCC patients and healthy controls. Serum hepatitis B surface antigen (HBsAg), and antibodies to hepatitis C virus (anti-HCV) were determined, and standardized personal interview conducted using a structured questionnaire. Multivariate analysis indicated that betel quid chewing (odds ratio (OR), 3.49; 95% confidence interval (CI), 1.74–6.96), HBsAg (OR, 16.69; 95% CI, 9.92–28.07), anti-HCV (OR, 38.57; 95% CI, 18.15–81.96), and educational duration of less than 10 years (OR, 1.71; 95% CI, 1.05–2.78) are independent risk factors of HCC. In addition, there was an additive interaction between betel quid chewing and chronic infection with either hepatitis B virus (synergy index, 5.37) or hepatitis C virus (synergy index, 1.66). Moreover, risk on HCC increased as duration of betel quid chewing increased, or amount of betel quid consumed (each P for trend < 0.0001). © 2001 Cancer Research Campaign http://www.bjcancer.co

    KK6 from M2 in BLG

    Full text link
    We study the possibility that the Kaluza-Klein monopole (KK6) world-volume action may be obtained from the multiple membranes (M2) action which is described by BLG theory. We first point out that the infinite dimensional Lie 3-algebra based on the Nambu-Poisson structure could not only provide three dimensional manifolds to allow M5 from M2, which was studied by previous authors, but also provide five dimensional manifolds to allow KK6 from M2. We next present a possible way that the U(1) field on KK6 world-volume action could be produced form the gauge potential in BLG theory.Comment: Latex, 15 pages. V3: Add theorem 2 to complete proof. V4: Detail physical interpretations and calculations in section

    Respondents of health survey powered by the innovative NURO app exhibit correlations between exercise frequencies and diet habits, and between stress levels and sleep wellness

    Get PDF
    Nurosene's NURO app (nurosene.com) is an innovative smartphone application that gathers and analyzes active self-report metrics from users, empowering them with data-driven health machine intelligence. We present the data collected and analyzed from the initial round of participants who responded to a 12-question survey on their life-style and health status. Exploratory results using a variational autoencoder (VAE) suggested that much of the variability of the 12 dimensional data could be accounted for by two approximately uncorrelated latent variables: one pertaining to stress and sleep, and the other pertaining to exercise and diet. Subsequent modeling of the data using exploratory and confirmatory factor analyses (EFAs and CFAs) found that optimal data fits consisted of four factors, namely exercise, diet, stress, and sleep. Covariance values were high between exercise and diet, and between stress and sleep, but much lower between other pairings of non-identical factors. Both EFAs and CFAs provided extra contexts to and quantified the more preliminary VAE observations. Overall, our results significantly reduce the apparent complexity of the response data. This reduction allows for more efficient future stratification and analyses of participants based on simpler latent variables. Our discovery of novel relationships between stress and sleep, and between exercise and diet suggests the possibility of applying predictive analytics in future efforts

    Exploring the Thermodynamics of a Universal Fermi Gas

    Full text link
    From sand piles to electrons in metals, one of the greatest challenges in modern physics is to understand the behavior of an ensemble of strongly interacting particles. A class of quantum many-body systems such as neutron matter and cold Fermi gases share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit [1,2]. It is then possible to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap [3-5], making it difficult to compare with many-body theories developed for uniform gases. Here we develop a general method that provides for the first time the equation of state of a uniform gas, as well as a detailed comparison with existing theories [6,14]. The precision of our equation of state leads to new physical insights on the unitary gas. For the unpolarized gas, we prove that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory and we localize the superfluid transition. For a spin-polarized system, our equation of state at zero temperature has a 2% accuracy and it extends the work of [15] on the phase diagram to a new regime of precision. We show in particular that, despite strong correlations, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons [10,16-18].Comment: 8 pages, 5 figure

    Multi-indexed (q-)Racah Polynomials

    Get PDF
    As the second stage of the project multi-indexed orthogonal polynomials, we present, in the framework of `discrete quantum mechanics' with real shifts in one dimension, the multi-indexed (q-)Racah polynomials. They are obtained from the (q-)Racah polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of `virtual state' vectors, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier. The virtual state vectors are the `solutions' of the matrix Schr\"odinger equation with negative `eigenvalues', except for one of the two boundary points.Comment: 29 pages. The type II (q-)Racah polynomials are deleted because they can be obtained from the type I polynomials. To appear in J.Phys.

    A ROSAT HRI survey of bright nearby galaxies

    Get PDF
    We use the extensive public archive of ROSAT High Resolution Imager (HRI) observations to carry out a statistical investigation of the X-ray properties of nearby galaxies. Specifically we focus on the sample of 486 bright (B_T < 12.5) northern galaxies studied by Ho, Filippenko and Sargent (HFS) in the context of their exploration of the optical spectroscopic properties of nearby galactic nuclei. Over 20% of HFS galaxies are encompassed in ROSAT HRI fields of reasonable (> 10ks) exposure. The X-ray sources detected within the optical extent of each galaxy are categorised as either nuclear or non-nuclear depending on whether the source is positioned within or outside of a 25 arcsecond radius circle centred on the optical nucleus. A nuclear X-ray source is detected in over 70% of the galaxies harbouring either a Seyfert or LINER nucleus compared to a detection rate of only ~40% in less active systems. The correlation of the H alpha luminosity with nuclear X-ray luminosity previously observed in QSOs and bright Seyfert 1 galaxies appears to extend down into the regime of ultra-low luminosity (L(x)~10^38 - 10^40 erg/s) active galactic nuclei (AGN). The inferred accretion rates for this sample of low-luminosity AGN are significantly sub-Eddington. In total 142 non-nuclear sources were detected. In combination with published data for M31 this leads to a luminosity distribution (normalised to an optical blue luminosity of L(B) = 10^10 L(solar)) for the discrete X-ray source population in spiral galaxies of the form dN/dL38 = 1.0 +/- 0.2 L38^-1.8, where L38 is the X-ray luminosity in units of 10^38 erg/s. The implied L(x)/L(B) ratio is ~1.1 x 10^39 erg/s/(10^10 L(solar)). The nature of the substantial number of ``super-luminous'' non-nuclear objects detected in the survey is discussed.Comment: 20 pages, 7 figures, accepted for publication in MNRAS. Also available from http://www.star.le.ac.uk/~tro/papers/xhfs.p
    • …
    corecore