21,972 research outputs found
Two--Electron Atoms in Short Intense Laser Pulses
We discuss a method of solving the time dependent Schrodinger equation for
atoms with two active electrons in a strong laser field, which we used in a
previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to
calculate ionization, double excitation and harmonic generation in Helium by
short laser pulses. The method employs complex scaling and an expansion in an
explicitly correlated basis. Convergence of the calculations is documented and
error estimates are provided. The results for Helium at peak intensities up to
10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly
accurate calculations are presented for electron detachment and double
excitation of the negative hydrogen ion.Comment: 14 pages, including figure
A chemotaxis model of feather primordia pattern formation during avian development
The orderly formation of the avian feather array is a classic example of periodic pattern formation during embryonic development. Various mathematical models have been developed to describe this process, including Turing/activator-inhibitor type reaction-diffusion systems and chemotaxis/mechanical-based models based on cell movement and tissue interactions. In this paper we formulate a mathematical model founded on experimental findings, a set of interactions between the key cellular (dermal and epidermal cell populations) and molecular (fibroblast growth factor, FGF, and bone morphogenetic protein, BMP) players and a medially progressing priming wave that acts as the trigger to initiate patterning. Linear stability analysis is used to show that FGF-mediated chemotaxis of dermal cells is the crucial driver of pattern formation, while perturbations in the form of ubiquitous high BMP expression suppress patterning, consistent with experiments. Numerical simulations demonstrate the capacity of the model to pattern the skin in a spatial-temporal manner analogous to avian feather development. Further, experimental perturbations in the form of bead-displacement experiments are recapitulated and predictions are proposed in the form of blocking mesenchymal cell proliferation
Duality of Quasilocal Black Hole Thermodynamics
We consider T-duality of the quasilocal black hole thermodynamics for the
three-dimensional low energy effective string theory. Quasilocal thermodynamic
variables in the first law are explicitly calculated on a general axisymmetric
three-dimensional black hole solution and corresponding dual one. Physical
meaning of the dual invariance of the black hole entropy is considered in terms
of the Euclidean path integral formulation.Comment: 19 pages, Latex, no figures, to be published in Class. Quantum Grav.
Some minor changes, references adde
Particle abundance in a thermal plasma: quantum kinetics vs. Boltzmann equation
We study the abundance of a particle species in a thermalized plasma by
introducing a quantum kinetic description based on the non-equilibrium
effective action. A stochastic interpretation of quantum kinetics in terms of a
Langevin equation emerges naturally. We consider a particle species that is
stable in the vacuum and interacts with \emph{heavier} particles that
constitute a thermal bath in equilibrium and define of a fully renormalized
single particle distribution function. The distribution function thermalizes on
a time scale determined by the \emph{quasiparticle} relaxation rate. The
equilibrium distribution function depends on the full spectral density and
features off-shell contributions to the particle abundance. A model of a
bosonic field in interaction with two \emph{heavier} bosonic fields is
studied. We find substantial departures from the Bose-Einstein result both in
the high temperature and the low temperature but high momentum region. In the
latter the abundance is exponentially suppressed but larger than the
Bose-Einstein result. We obtain the Boltzmann equation in renormalized
perturbation theory and highlight the origin of the differences. We argue that
the corrections to the abundance of cold dark matter candidates are
observationally negligible and that recombination erases any possible spectral
distortions of the CMB. However we expect that the enhancement at high
temperature may be important for baryogenesis.Comment: 39 pages, 11 figures. Clarifying remarks. To appear in Physical
Review
Quantum receiver beyond the standard quantum limit of coherent optical communication
The most efficient modern optical communication is known as coherent
communication and its standard quantum limit (SQL) is almost reachable with
current technology. Though it has been predicted for a long time that this SQL
could be overcome via quantum mechanically optimized receivers, such a
performance has not been experimentally realized so far. Here we demonstrate
the first unconditional evidence surpassing the SQL of coherent optical
communication. We implement a quantum receiver with a simple linear optics
configuration and achieve more than 90% of the total detection efficiency of
the system. Such an efficient quantum receiver will provide a new way of
extending the distance of amplification-free channels, as well as of realizing
quantum information protocols based on coherent states and the loophole-free
test of quantum mechanics.Comment: 5 pages, 3 figure
Independent analysis of the orbits of Pioneer 10 and 11
Independently developed orbit determination software is used to analyze the
orbits of Pioneer 10 and 11 using Doppler data. The analysis takes into account
the gravitational fields of the Sun and planets using the latest JPL
ephemerides, accurate station locations, signal propagation delays (e.g., the
Shapiro delay, atmospheric effects), the spacecrafts' spin, and maneuvers. New
to this analysis is the ability to utilize telemetry data for spin, maneuvers,
and other on-board systematic effects. Using data that was analyzed in prior
JPL studies, the anomalous acceleration of the two spacecraft is confirmed. We
are also able to put limits on any secondary acceleration (i.e., jerk) terms.
The tools that were developed will be used in the upcoming analysis of recently
recovered Pioneer 10 and 11 Doppler data files.Comment: 22 pages, 5 figures; accepted for publication in IJMP
Quantum Hall Ferromagnets
It is pointed out recently that the quantum Hall states in bilayer
systems behave like easy plane quantum ferromagnets. We study the
magnetotransport of these systems using their ``ferromagnetic" properties and a
novel spin-charge relation of their excitations. The general transport is a
combination of the ususal Hall transport and a time dependent transport with
time average. The latter is due to a phase slippage process in
and is characterized by two topological constants. (Figures will be
provided upon requests).Comment: 4 pages, Revtex, Ohio State Universit
Coreless vortex ground state of the rotating spinor condensate
We study the ground state of the rotating spinor condensate and show that for
slow rotation the ground state of the ferromagnetic spinor condensate is a
coreless vortex. While coreless vortex is not topologically stable, we show
that there is an energetic threshold for the creation of a coreless vortex.
This threshold corresponds to a critical rotation frequency that vanishes as
the system size increases. Also, we demonstrate the dramatically different
behavior of the spinor condensate with anti-ferromagnetic interactions. For
anti-ferromagnetic spinor condensate the angular momentum as a function of
rotation frequency exhibits the familiar staircase behavior, but in contrast to
an ordinary condensate the first step is to the state with angular momentum 1/2
per particle.Comment: v2: Numerical parameters for trapping frequency in z-direction and
for the particle number changed. Two new citations added ([13] and [22]).
More discussion in chapter III A. added. A new Figure 4 added, former figure
4 changed to Figure
- …