36,975 research outputs found
Masses of Open-Flavour Heavy-Light Hybrids from QCD Sum-Rules
We use QCD Laplace sum-rules to predict masses of open-flavour heavy-light
hybrids where one of the hybrid's constituent quarks is a charm or bottom and
the other is an up, down, or strange. We compute leading-order, diagonal
correlation functions of several hybrid interpolating currents, taking into
account QCD condensates up to dimension-six, and extract hybrid mass
predictions for all , as well as explore possible
mixing effects with conventional quark-antiquark mesons. Within theoretical
uncertainties, our results are consistent with a degeneracy between the
heavy-nonstrange and heavy-strange hybrids in all channels. We find a
similar mass hierarchy of , , and states (a state
lighter than essentially degenerate and states) in both the
charm and bottom sectors, and discuss an interpretation for the states.
If conventional meson mixing is present the effect is an increase in the hybrid
mass prediction, and we estimate an upper bound on this effect.Comment: 24 pages, 8 figures. Mass predictions updated from previous version
to reflect corrected sign error in sum rule analysis. Mixing analysis and
examination of higher weight sum-rules added. To be published in JHE
Implications of an r-mode in XTE J1751-305: Mass, radius and spin evolution
Recently Strohmayer and Mahmoodifar presented evidence for a coherent
oscillation in the X-ray light curve of the accreting millisecond pulsar XTE
J1751-305, using data taken by RXTE during the 2002 outburst of this source.
They noted that a possible explanation includes the excitation of a non-radial
oscillation mode of the neutron star, either in the form of a g-mode or an
r-mode. The r-mode interpretation has connections with proposed spin-evolution
scenarios for systems such as XTE J1751-305. Here we examine in detail this
interesting possible interpretation. Using the ratio of the observed
oscillation frequency to the star's spin frequency, we derive an approximate
neutron star mass-radius relation which yields reasonable values for the mass
over the range of expected stellar radius (as constrained by observations of
radius-expansion burst sources). However, we argue that the large mode
amplitude suggested by the Strohmayer and Mahmoodifar analysis would inevitably
lead to a large spin-down of the star, inconsistent with its observed spin
evolution, regardless of whether the r-mode itself is in a stable or unstable
regime. We therefore conclude that the r-mode interpretation of the observed
oscillation is not consistent with our current understanding of neutron star
dynamics and must be considered unlikely. Finally we note that, subject to the
availability of a sufficiently accurate timing model, a direct
gravitational-wave search may be able to confirm or reject an r-mode
interpretation unambiguously, should such an event, with a similar inferred
mode amplitude, recur during the Advanced detector era.Comment: 8 pages, 3 figures; submitted to MNRA
Spinor Bose Condensates in Optical Traps
In an optical trap, the ground state of spin-1 Bosons such as Na,
K, and Rb can be either a ferromagnetic or a "polar" state,
depending on the scattering lengths in different angular momentum channel. The
collective modes of these states have very different spin character and spatial
distributions. While ordinary vortices are stable in the polar state, only
those with unit circulation are stable in the ferromagnetic state. The
ferromagnetic state also has coreless (or Skyrmion) vortices like those of
superfluid He-A. Current estimates of scattering lengths suggest that the
ground states of Na and Rb condensate are a polar state and a
ferromagnetic state respectively.Comment: 11 pages, no figures. email : [email protected]
Investigation of defect cavities formed in three-dimensional woodpile photonic crystals
We report the optimisation of optical properties of single defects in
three-dimensional (3D) face-centred-cubic (FCC) woodpile photonic crystal (PC)
cavities by using plane-wave expansion (PWE) and finite-difference time-domain
(FDTD) methods. By optimising the dimensions of a 3D woodpile PC, wide photonic
band gaps (PBG) are created. Optical cavities with resonances in the bandgap
arise when point defects are introduced in the crystal. Three types of single
defects are investigated in high refractive index contrast (Gallium
Phosphide-Air) woodpile structures and Q-factors and mode volumes ()
of the resonant cavity modes are calculated. We show that, by introducing an
air buffer around a single defect, smaller mode volumes can be obtained. We
demonstrate high Q-factors up to 700000 and cavity volumes down to
. The estimates of and are then used to
quantify the enhancement of spontaneous emission and the possibility of
achieving strong coupling with nitrogen-vacancy (NV) colour centres in diamond.Comment: 12 pages, 11 figure
An equations-of-motion approach to quantum mechanics: application to a model phase transition
We present a generalized equations-of-motion method that efficiently
calculates energy spectra and matrix elements for algebraic models. The method
is applied to a 5-dimensional quartic oscillator that exhibits a quantum phase
transition between vibrational and rotational phases. For certain parameters,
10 by 10 matrices give better results than obtained by diagonalising 1000 by
1000 matrices.Comment: 4 pages, 1 figur
Duality of Quasilocal Black Hole Thermodynamics
We consider T-duality of the quasilocal black hole thermodynamics for the
three-dimensional low energy effective string theory. Quasilocal thermodynamic
variables in the first law are explicitly calculated on a general axisymmetric
three-dimensional black hole solution and corresponding dual one. Physical
meaning of the dual invariance of the black hole entropy is considered in terms
of the Euclidean path integral formulation.Comment: 19 pages, Latex, no figures, to be published in Class. Quantum Grav.
Some minor changes, references adde
- …