13 research outputs found

    A new family of shape invariantly deformed Darboux-P\"oschl-Teller potentials with continuous \ell

    Get PDF
    We present a new family of shape invariant potentials which could be called a ``continuous \ell version" of the potentials corresponding to the exceptional (X_{\ell}) J1 Jacobi polynomials constructed recently by the present authors. In a certain limit, it reduces to a continuous \ell family of shape invariant potentials related to the exceptional (X_{\ell}) L1 Laguerre polynomials. The latter was known as one example of the `conditionally exactly solvable potentials' on a half line.Comment: 19 pages. Sec.5(Summary and Comments): one sentence added in the first paragraph, several sentences modified in the last paragraph. References: one reference ([25]) adde

    Multi-indexed (q-)Racah Polynomials

    Get PDF
    As the second stage of the project multi-indexed orthogonal polynomials, we present, in the framework of `discrete quantum mechanics' with real shifts in one dimension, the multi-indexed (q-)Racah polynomials. They are obtained from the (q-)Racah polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of `virtual state' vectors, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier. The virtual state vectors are the `solutions' of the matrix Schr\"odinger equation with negative `eigenvalues', except for one of the two boundary points.Comment: 29 pages. The type II (q-)Racah polynomials are deleted because they can be obtained from the type I polynomials. To appear in J.Phys.

    Exceptional Askey-Wilson type polynomials through Darboux-Crum transformations

    Get PDF
    An alternative derivation is presented of the infinitely many exceptional Wilson and Askey-Wilson polynomials, which were introduced by the present authors in 2009. Darboux-Crum transformations intertwining the discrete quantum mechanical systems of the original and the exceptional polynomials play an important role. Infinitely many continuous Hahn polynomials are derived in the same manner. The present method provides a simple proof of the shape invariance of these systems as in the corresponding cases of the exceptional Laguerre and Jacobi polynomials.Comment: 24 pages. Comments and references added. To appear in J.Phys.

    Exceptional orthogonal polynomials and the Darboux transformation

    Get PDF
    We adapt the notion of the Darboux transformation to the context of polynomial Sturm-Liouville problems. As an application, we characterize the recently described XmX_m Laguerre polynomials in terms of an isospectral Darboux transformation. We also show that the shape-invariance of these new polynomial families is a direct consequence of the permutability property of the Darboux-Crum transformation.Comment: corrected abstract, added references, minor correction

    A conjecture on Exceptional Orthogonal Polynomials

    Get PDF
    Exceptional orthogonal polynomial systems (X-OPS) arise as eigenfunctions of Sturm-Liouville problems and generalize in this sense the classical families of Hermite, Laguerre and Jacobi. They also generalize the family of CPRS orthogonal polynomials. We formulate the following conjecture: every exceptional orthogonal polynomial system is related to a classical system by a Darboux-Crum transformation. We give a proof of this conjecture for codimension 2 exceptional orthogonal polynomials (X2-OPs). As a by-product of this analysis, we prove a Bochner-type theorem classifying all possible X2-OPS. The classification includes all cases known to date plus some new examples of X2-Laguerre and X2-Jacobi polynomials

    Families of superintegrable Hamiltonians constructed from exceptional polynomials

    Full text link
    We introduce a family of exactly-solvable two-dimensional Hamiltonians whose wave functions are given in terms of Laguerre and exceptional Jacobi polynomials. The Hamiltonians contain purely quantum terms which vanish in the classical limit leaving only a previously known family of superintegrable systems. Additional, higher-order integrals of motion are constructed from ladder operators for the considered orthogonal polynomials proving the quantum system to be superintegrable

    Exceptional orthogonal polynomials and new exactly solvable potentials in quantum mechanics

    Full text link
    In recent years, one of the most interesting developments in quantum mechanics has been the construction of new exactly solvable potentials connected with the appearance of families of exceptional orthogonal polynomials (EOP) in mathematical physics. In contrast with families of (Jacobi, Laguerre and Hermite) classical orthogonal polynomials, which start with a constant, the EOP families begin with some polynomial of degree greater than or equal to one, but still form complete, orthogonal sets with respect to some positive-definite measure. We show how they may appear in the bound-state wavefunctions of some rational extensions of well-known exactly solvable quantum potentials. Such rational extensions are most easily constructed in the framework of supersymmetric quantum mechanics (SUSYQM), where they give rise to a new class of translationally shape invariant potentials. We review the most recent results in this field, which use higher-order SUSYQM. We also comment on some recent re-examinations of the shape invariance condition, which are independent of the EOP construction problem.Comment: 21 pages, no figure; communication at the Symposium Symmetries in Science XV, July 31-August 5, 2011, Bregenz, Austri
    corecore