37 research outputs found

    Efficient Inhibition of HIV Replication in the Gastrointestinal and Female Reproductive Tracts of Humanized BLT Mice by EFdA

    Get PDF
    The nucleoside reverse transcriptase inhibitor (NRTI) 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) in preclinical development exhibits improved safety and antiviral activity profiles with minimal drug resistance compared to approved NRTIs. However, the systemic antiviral efficacy of EFdA has not been fully evaluated. In this study, we utilized bone marrow/liver/thymus (BLT) humanized mice to investigate the systemic effect of EFdA treatment on HIV replication and CD4+ T cell depletion in the peripheral blood (PB) and tissues. In particular, we performed a comprehensive analysis of the female reproductive tract (FRT) and gastrointestinal (GI) tract, major sites of transmission, viral replication, and CD4+ T cell depletion and where some current antiretroviral drugs have a sub-optimal effect

    Predicting HIV Pre-exposure Prophylaxis Efficacy for Women using a Preclinical Pharmacokinetic-Pharmacodynamic In Vivo Model

    Get PDF
    The efficacy of HIV pre-exposure prophylaxis (PrEP) relies on adherence and may also depend on the route of HIV acquisition. Clinical studies of systemic tenofovir disoproxil fumarate (TDF) PrEP revealed reduced efficacy in women compared to men with similar degrees of adherence. To select the most effective PrEP strategies, preclinical studies are critically needed to establish correlations between drug concentrations (pharmacokinetics [PK]) and protective efficacy (pharmacodynamics [PD]). We utilized an in vivo preclinical model to perform a PK-PD analysis of systemic TDF PrEP for vaginal HIV acquisition. TDF PrEP prevented vaginal HIV acquisition in a dose-dependent manner. PK-PD modeling of tenofovir (TFV) in plasma, female reproductive tract tissue, cervicovaginal lavage fluid and its intracellular metabolite (TFV diphosphate) revealed that TDF PrEP efficacy was best described by plasma TFV levels. When administered at 50 mg/kg, TDF achieved plasma TFV concentrations (370 ng/ml) that closely mimicked those observed in humans and demonstrated the same risk reduction (70%) previously attained in women with high adherence. This PK-PD model mimics the human condition and can be applied to other PrEP approaches and routes of HIV acquisition, accelerating clinical implementation of the most efficacious PrEP strategies

    Combination Antifungal Therapy for Cryptococcal Meningitis

    Get PDF
    Background Combination antifungal therapy (amphotericin B deoxycholate and flucytosine) is the recommended treatment for cryptococcal meningitis but has not been shown to reduce mortality, as compared with amphotericin B alone. We performed a randomized, controlled trial to determine whether combining flucytosine or high-dose fluconazole with high-dose amphotericin B improved survival at 14 and 70 days. Methods We conducted a randomized, three-group, open-label trial of induction therapy for cryptococcal meningitis in patients with human immunodeficiency virus infection. All patients received amphotericin B at a dose of 1 mg per kilogram of body weight per day; patients in group 1 were treated for 4 weeks, and those in groups 2 and 3 for 2 weeks. Patients in group 2 concurrently received flucytosine at a dose of 100 mg per kilogram per day for 2 weeks, and those in group 3 concurrently received fluconazole at a dose of 400 mg twice daily for 2 weeks. Results A total of 299 patients were enrolled. Fewer deaths occurred by days 14 and 70 among patients receiving amphotericin B and flucytosine than among those receiving amphotericin B alone (15 vs. 25 deaths by day 14; hazard ratio, 0.57; 95% confidence interval [CI], 0.30 to 1.08; unadjusted P=0.08; and 30 vs. 44 deaths by day 70; hazard ratio, 0.61; 95% CI, 0.39 to 0.97; unadjusted P=0.04). Combination therapy with fluconazole had no significant effect on survival, as compared with monotherapy (hazard ratio for death by 14 days, 0.78; 95% CI, 0.44 to 1.41; P=0.42; hazard ratio for death by 70 days, 0.71; 95% CI, 0.45 to 1.11; P=0.13). Amphotericin B plus flucytosine was associated with significantly increased rates of yeast clearance from cerebrospinal fluid (−0.42 log10 colony-forming units [CFU] per milliliter per day vs. −0.31 and −0.32 log10 CFU per milliliter per day in groups 1 and 3, respectively; P<0.001 for both comparisons). Rates of adverse events were similar in all groups, although neutropenia was more frequent in patients receiving a combination therapy. Conclusions Amphotericin B plus flucytosine, as compared with amphotericin B alone, is associated with improved survival among patients with cryptococcal meningitis. A survival benefit of amphotericin B plus fluconazole was not found

    Systemic multilineage engraftment in mice after in utero transplantation with human hematopoietic stem cells

    Get PDF
    In utero hematopoietic cell transplantation (IUHCT) is a potential therapy for the treatment of numerous genetic diseases such as hemoglobinopathies, immunodeficiencies, and inborn errors of metabolism.1 In utero therapy offers the benefit of avoiding host myeloablation and immunosuppression and has been shown to be successful in multiple animal models, including mice,2-5 dogs,6,7 pigs,8,9 and sheep.10-12 The timing of IUHCT exposes the transplanted human cells to the normal fetal migratory and developmental cues that facilitate proper stem cell distribution and differentiation.11,12 Clinically, IUHCT has been successful for fetuses with severe combined immunodeficiency (SCID),13,14 but therapeutic uses for other diseases, including hemoglobinopathies, have seen limited success.15 Further investigations identified multiple barriers to successful engraftment, including lack of space within the hematopoietic niche16,17 and the maternal immune system.2,18 Among available animal models of IUHCT, the fetal mouse remains an efficient and reproducible model to study the differentiation of stem cells in a nonirradiated host. NSG (NOD-SCID IL2Rg-null) mice, which are developed with SCID and IL-2Rg-null chain mutations, are a robust platform for the engraftment of human hematopoietic cells because they have no endogenous T, B, or natural killer cells.19-22 In this study, we used IUHCT of human CD341 cells in NSG mice to create a reproducible mouse model to study stem cell engraftment, differentiation, and systemic repopulation after IUHCT

    Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo

    Get PDF
    Long-lasting, latently infected resting CD4+ T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir1. Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect2–9. Here we show that activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow–liver–thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4+ T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal—in combination with appropriate tools for systemic clearance of persistent HIV infection—greatly increases opportunities for HIV eradication

    Efficient Inhibition of HIV Replication in the Gastrointestinal and Female Reproductive Tracts of Humanized BLT Mice by EFdA.

    No full text
    The nucleoside reverse transcriptase inhibitor (NRTI) 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) in preclinical development exhibits improved safety and antiviral activity profiles with minimal drug resistance compared to approved NRTIs. However, the systemic antiviral efficacy of EFdA has not been fully evaluated. In this study, we utilized bone marrow/liver/thymus (BLT) humanized mice to investigate the systemic effect of EFdA treatment on HIV replication and CD4+ T cell depletion in the peripheral blood (PB) and tissues. In particular, we performed a comprehensive analysis of the female reproductive tract (FRT) and gastrointestinal (GI) tract, major sites of transmission, viral replication, and CD4+ T cell depletion and where some current antiretroviral drugs have a sub-optimal effect.EFdA treatment resulted in reduction of HIV-RNA in PB to undetectable levels in the majority of treated mice by 3 weeks post-treatment. HIV-RNA levels in cervicovaginal lavage of EFdA-treated BLT mice also declined to undetectable levels demonstrating strong penetration of EFdA into the FRT. Our results also demonstrate a strong systemic suppression of HIV replication in all tissues analyzed. In particular, we observed more than a 2-log difference in HIV-RNA levels in the GI tract and FRT of EFdA-treated BLT mice compared to untreated HIV-infected control mice. In addition, HIV-RNA was also significantly lower in the lymph nodes, liver, lung, spleen of EFdA-treated BLT mice compared to untreated HIV-infected control mice. Furthermore, EFdA treatment prevented the depletion of CD4+ T cells in the PB, mucosal tissues and lymphoid tissues.Our findings indicate that EFdA is highly effective in controlling viral replication and preserving CD4+ T cells in particular with high efficiency in the GI and FRT tract. Thus, EFdA represents a strong potential candidate for further development as a part of antiretroviral therapy regimens

    Allelopathic Potential of Rice and Identification of Published Allelochemicals by Cloud-Based Metabolomics Platform

    No full text
    The methanol extracts of nine popular cultivated Vietnamese rice cultivars (Oryza sativa L.cv. OM 2395, 5451, 6976, 380, 5930, 4498, 3536, N406, and 7347) were used to explore their allelopathic potential on barnyardgrass (Echinochola crus-galli L.). At 0.1 g mL&minus;1, OM 5930, OM 4498, and OM 6976 correlatively possessed greatest phytotoxicity on barnyardgrass shoot (98.77%, 90.75%, and 87.17%) and root (99.39%, 92.83%, and 86.56%) growth. The following study aimed to detect previously-known allelochemicals in those rice using XCMS online cloud-based metabolomics platform. Twenty allelochemicals were semi-quantified and seven of them were detected predominantly and five was putatively confirmed in OM 5930 (mg/ 100g fresh rice) as salicylic acid (5.0076), vanillic acid (0.1246), p-coumaric acid (0.1590), 2,4-dimethoxybenzoic acid (0.1045), and cinnamic acid (3.3230). These compounds were active at concentrations greater than 0.5 mM and the average EC50 were 1.24 mM. The results indicated that OM 5930 may use as promising candidates in weed biological control for rice production

    Air pollution and risk of respiratory and cardiovascular hospitalizations in the most populous city in Vietnam

    No full text
    Air pollution has become an alarming issue in Vietnam recently; however, there was only one study so far on the effects of ambient air pollution on population health. Our study aimed to investigate the short-term effects of air pollutants including PM, NO, SO, and O on respiratory and cardiovascular hospitalizations in Ho Chi Minh City (HCMC), the largest city in Vietnam. Data on hospitalization from the two largest hospitals in HCMC and daily records of PM, NO, SO, O and meteorological data were collected from February 2004 to December 2007. A time-series regression analysis with distributed lag model was applied for data analysis. Changes in levels of NO and PM were strongly associated with hospital admissions for both respiratory and cardiovascular diseases (CVD); whereas levels of SO were only moderately associated with respiratory and CVD hospital admissions and O concentration was not associated with any of them. For a 10 μg/m increase of each air pollutant, the risk of respiratory admissions increased from 0.7% to 8% while the risk of CVD admissions increased from 0.5% to 4%. Females were found to be more sensitive than males to exposure to air pollutants in regard to respiratory diseases. In regard to CVD, females (RR, 1.04, 95% CI, 1.01-1.07) had a slightly higher risk of admissions than males (RR, 1.03, 95% CI, 1-1.06) to exposure to NO. In contrast, males (RR, 1.007, 95%CI, 1-1.01) had a higher risk of admission than females (RR, 1.004, 95%CI, 1.001-1.007) to exposure to PM. People in the age group of 5-65 year-olds had a slightly higher risk of admissions caused by air pollutants than the elderly (65+ years old) except for a significant effect of PM on the risk of cardiovascular admissions was found for the elderly only
    corecore