49,026 research outputs found
Two-dimensional gases of generalized statistics in a uniform magnetic field
We study the low temperature properties of two-dimensional ideal gases of
generalized statistics in a uniform magnetic field. The generalized statistics
considered here are the parafermion statistics and the exclusion statistics.
Similarity in the behaviours of the parafermion gas of finite order and the
gas with exclusion coefficient at very low temperatures is noted. These
two systems become exactly equivalent at . Qumtum Hall effect with these
particles as charge carriers is briefly discussed.Comment: Latex file, 14 pages, 5 figures available on reques
Spinor Bose Condensates in Optical Traps
In an optical trap, the ground state of spin-1 Bosons such as Na,
K, and Rb can be either a ferromagnetic or a "polar" state,
depending on the scattering lengths in different angular momentum channel. The
collective modes of these states have very different spin character and spatial
distributions. While ordinary vortices are stable in the polar state, only
those with unit circulation are stable in the ferromagnetic state. The
ferromagnetic state also has coreless (or Skyrmion) vortices like those of
superfluid He-A. Current estimates of scattering lengths suggest that the
ground states of Na and Rb condensate are a polar state and a
ferromagnetic state respectively.Comment: 11 pages, no figures. email : [email protected]
Influence of high gas production during thermophilic anaerobic digestion in pilot-scale and lab-scale reactors on survival of the thermotolerant pathogens Clostridium perfringens and Campylobacter jejuni in piggery wastewater
Safe reuse of animal wastes to capture energy and nutrients, through anaerobic digestion processes, is becoming an increasingly desirable solution to environmental pollution. Pathogen decay is the most important safety consideration and is in general, improved at elevated temperatures and longer hydraulic residence times. During routine sampling to assess pathogen decay in thermophilic digestion, an inversely proportional relationship between levels of Clostridium perfringens and gas production was observed. Further samples were collected from pilot-scale, bench-scale thermophilic reactors and batch scale vials to assess whether gas production (predominantly methane) could be a useful indicator of decay of the thermotolerant pathogens C. perfringens and Campylobacter jejuni. Pathogen levels did appear to be lower where gas production and levels of methanogens were higher. This was evident at each operating temperature (50, 57, 65 °C) in the pilot-scale thermophilic digesters, although higher temperatures also reduced the numbers of pathogens detected. When methane production was higher, either when feed rate was increased, or pH was lowered from 8.2 (piggery wastewater) to 6.5, lower numbers of pathogens were detected. Although a number of related factors are known to influence the amount and rate of methane production, it may be a useful indicator of the removal of the pathogens C. perfringens and C. jejuni
Development of aircraft brake materials
The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5)
Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation
We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed
Boundary Condition of Polyelectrolyte Adsorption
The modification of the boundary condition for polyelectrolyte adsorption on
charged surface with short-ranged interaction is investigated under two
regimes. For weakly charged Gaussian polymer in which the short-ranged
attraction dominates, the boundary condition is the same as that of the neutral
polymer adsorption. For highly charged polymer (compressed state) in which the
electrostatic interaction dominates, the linear relationship (electrostatic
boundary condition) between the surface monomer density and the surface charge
density needs to be modified.Comment: 4 page
A Tidal Flare Candidate in Abell 1795
As part of our ongoing archival X-ray survey of galaxy clusters for tidal
flares, we present evidence of an X-ray transient source within 1 arcmin of the
core of Abell 1795. The extreme variability (a factor of nearly 50), luminosity
(> 2 x 10^42 erg s^{-1}), long duration (> 5 years) and supersoft X-ray
spectrum (< 0.1 keV) are characteristic signatures of a stellar tidal
disruption event according to theoretical predictions and to existing X-ray
observations, implying a massive >~10^5 M_sun black hole at the centre of that
galaxy. The large number of X-ray source counts (~700) and long temporal
baseline (~12 years with Chandra and XMM-Newton) make this one of the
best-sampled examples of any tidal flare candidate to date. The transient may
be the same EUV source originally found contaminating the diffuse ICM
observations of Bowyer et al. (1999), which would make it the only tidal flare
candidate with reported EUV observations and implies an early source luminosity
1-2 orders of magnitude greater. If the host galaxy is a cluster member then it
must be a dwarf galaxy, an order of magnitude less massive than the quiescent
galaxy Henize 2-10 which hosts a massive black hole that is difficult to
reconcile with its low mass. The unusual faintness of the host galaxy may be
explained by tidal stripping in the cluster core.Comment: Accepted by MNRAS 2013 July 23. 27 pages, 10 figure
Google matrix of the citation network of Physical Review
We study the statistical properties of spectrum and eigenstates of the Google
matrix of the citation network of Physical Review for the period 1893 - 2009.
The main fraction of complex eigenvalues with largest modulus is determined
numerically by different methods based on high precision computations with up
to binary digits that allows to resolve hard numerical problems for
small eigenvalues. The nearly nilpotent matrix structure allows to obtain a
semi-analytical computation of eigenvalues. We find that the spectrum is
characterized by the fractal Weyl law with a fractal dimension .
It is found that the majority of eigenvectors are located in a localized phase.
The statistical distribution of articles in the PageRank-CheiRank plane is
established providing a better understanding of information flows on the
network. The concept of ImpactRank is proposed to determine an influence domain
of a given article. We also discuss the properties of random matrix models of
Perron-Frobenius operators.Comment: 25 pages. 17 figures. Published in Phys. Rev.
- âŠ