534 research outputs found

    Superconductivity and the high field ordered phase in the heavy fermion compound PrOs4_4Sb12_{12}

    Full text link
    Superconductivity is observed in the filled skutterudite compound \PrOsSb{} below a critical temperature temperature Tc=1.85T_\mathrm{c} = 1.85 K and appears to develop out of a nonmagnetic heavy Fermi liquid with an effective mass m50mem^{*} \approx 50 m_\mathrm{e}, where mem_\mathrm{e} is the free electron mass. Features associated with a cubic crystalline electric field are present in magnetic susceptibility, specific heat, electrical resistivity, and inelastic neutron scattering measurements, yielding a Pr3+^{3+} energy level scheme consisting of a Γ3\Gamma_{3} nonmagnetic doublet ground state, a low lying Γ5\Gamma_{5} triplet excitied state at 10\sim 10 K, and much higher temperature Γ4\Gamma_{4} triplet and Γ1\Gamma_{1} singlet excited states. Measurements also indicate that the superconducting state is unconventional and consists of two distinct superconducting phases. At high fields and low temperatures, an ordered phase of magnetic or quadrupolar origin is observed, suggesting that the superconductivity may occur in the vicinity of a magnetic or quadrupolar quantum critical point.Comment: 11 pages, 4 figures, presented at the 3rd international symposium on Advance Science Research (ASR 2002), JAERI Tokai, Ibaraki, Japa

    Disability-specific associations with child health and functioning

    Get PDF
    This study examined the health profile of children with different types of disabilities and explored the disability-specific associations with various types of health and functioning using a large nonclinical sample of children. A cross-sectional school survey was conducted during 2016 and 2017. A total of 4114 children (aged 6–18 years) receiving primary or secondary education, or their proxy, in Hong Kong participated in the study. Disabilities were categorized as (a) physical disabilities; (b) learning and developmental disabilities; (c) intellectual disabilities; (d) internalizing disorders or mental illness; and (e) autism spectrum disorder. Health-related quality of life (QoL), sleep-related QoL, activities of daily living (ADL), emotional functioning, and social functioning were assessed and compared between children with disabilities and those without. The results showed that children with disabilities showed poorer physical functioning, health-related QoL, and emotional and social functioning than their counterparts without disabilities. Disability-specific associations with health were found: (a) physical disabilities and intellectual disabilities were associated with greater difficulties in ADL; (b) language impairment and Attention deficit/ hyperactivity disorder (ADHD) were negatively associated with sleep-related QoL; (c) all types of disabilities but hearing impairment were negatively associated with health-related QoL (HRQoL); and (d) language impairment, ADHD, internalizing disorder, as well as autism spectrum disorder were associated with greater abnormal behavioral difficulties. The findings warrant the development of tailor-made intervention programs and give insights to effective resource allocation for the children in need

    Superconductivity and crystalline electric field effects in the filled skutterudite series Pr(Os1x_{1-x}Rux_x)4_4Sb12_{12}

    Full text link
    X-ray powder diffraction, magnetic susceptibility χ(T)\chi(T), and electrical resistivity ρ(T)\rho(T) measurements were made on single crystals of the filled skutterudite series Pr(Os1x_{1-x}Rux_x)4_4Sb12_{12}. One end of the series (x=0x = 0) is a heavy fermion superconductor with a superconducting critical temperature Tc=1.85T_{c} = 1.85 K, while the other end (x=1x = 1) is a conventional superconductor with Tc1T_{c} \approx 1 K. The lattice constant aa decreases approximately linearly with increasing Ru concentration xx. As Ru (Os) is substituted for Os (Ru), TcT_{c} decreases nearly linearly with substituent concentration and exhibits a minimum with a value of Tc=0.75T_{c} = 0.75 K at x=0.6x = 0.6, suggesting that the two types of superconductivity compete with one another. Crystalline electric field (CEF) effects in χdc(T)\chi_\mathrm{dc}(T) and ρ(T)\rho(T) due to the splitting of the Pr3+^{3+} nine-fold degenerate Hund's rule J=4J = 4 multiplet are observed throughout the series, with the splitting between the ground state and the first excited state increasing monotonically as xx increases. The fits to the χdc(T)\chi_\mathrm{dc}(T) and ρ(T)\rho(T) data are consistent with a Γ3\Gamma_{3} doublet ground state for all values of x, although reasonable fits can be obtained for a Γ1\Gamma_{1} ground state for xx values near the end member compounds (x=0x = 0 or x=1x = 1).Comment: 10 pages, 8 figures, submitted to Phys. Rev.

    Humans decompose tasks by trading off utility and computational cost

    Full text link
    Human behavior emerges from planning over elaborate decompositions of tasks into goals, subgoals, and low-level actions. How are these decompositions created and used? Here, we propose and evaluate a normative framework for task decomposition based on the simple idea that people decompose tasks to reduce the overall cost of planning while maintaining task performance. Analyzing 11,117 distinct graph-structured planning tasks, we find that our framework justifies several existing heuristics for task decomposition and makes predictions that can be distinguished from two alternative normative accounts. We report a behavioral study of task decomposition (N=806N=806) that uses 30 randomly sampled graphs, a larger and more diverse set than that of any previous behavioral study on this topic. We find that human responses are more consistent with our framework for task decomposition than alternative normative accounts and are most consistent with a heuristic -- betweenness centrality -- that is justified by our approach. Taken together, our results provide new theoretical insight into the computational principles underlying the intelligent structuring of goal-directed behavior

    Individual and joint associations of anxiety disorder and depression with cardiovascular disease:A UK Biobank prospective cohort study

    Get PDF
    BACKGROUND: Growing evidence suggests that individuals with anxiety disorder have an elevated risk of cardiovascular disease (CVD) but few studies have assessed this association independently of or jointly with depression.METHODS: We conducted a prospective cohort study using UK Biobank. Diagnoses of anxiety disorder, depression, and CVDs were ascertained through linked hospital admission and mortality data. Individual and joint associations between anxiety disorder and depression and CVD overall, as well as each of myocardial infarction, stroke/transient ischemic attack, and heart failure, were analyzed using Cox proportional hazard models and interaction tests.RESULTS: Among the 431,973 participants, the risk of CVD was higher among those who had been diagnosed with anxiety disorder only (hazard ratio [HR] 1.72; 95% confidence interval [CI] 1.32-2.24), depression only (HR 2.07; 95% CI 1.79-2.40), and both conditions (HR 2.89; 95% CI 2.03-4.11) compared to those without these conditions, respectively. There was very little evidence of multiplicative or additive interaction. Results were similar for myocardial infarction, stroke/transient ischemic attack, and heart failure.CONCLUSIONS: Having anxiety is associated with the same magnitude of increased risk of CVD among people who do not have depression and those who do. Anxiety disorder should be considered for inclusion in CVD risk prediction and stratification, in addition to depression.</p

    Crystalline electric field effects in the electrical resistivity of PrOs4_4Sb12_{12}

    Full text link
    The temperature TT and magnetic field HH dependencies of the electrical resistivity ρ\rho of the recently discovered heavy fermion superconductor \PrOsSb{} have features that are associated with the splitting of the Pr3+^{3+} Hund's rule multiplet by the crystalline electric field (CEF). These features are apparently due to magnetic exchange and aspherical Coulomb scattering from the thermally populated CEF-split Pr3+^{3+} energy levels. The ρ(T)\rho(T) data in zero magnetic field can be described well by calculations based on CEF theory for various ratios of magnetic exchange and aspherical Coulomb scattering, and yield CEF parameters that are qualitatively consistent with those previously derived from magnetic susceptibility, specific heat, and inelastic neutron scattering measurements. Calculated ρ(H)\rho(H) isotherms for a Γ3\Gamma_{3} ground state qualitatively account for the `dome-shaped' feature in the measured ρ(H)\rho(H) isotherms.Comment: 8 pages, 2 figures, submitted to Journal of Physics: Condensed Matte
    corecore