2,682 research outputs found

    Erasure Coding for Real-Time Streaming

    Full text link
    We consider a real-time streaming system where messages are created sequentially at the source, and are encoded for transmission to the receiver over a packet erasure link. Each message must subsequently be decoded at the receiver within a given delay from its creation time. The goal is to construct an erasure correction code that achieves the maximum message size when all messages must be decoded by their respective deadlines under a specified set of erasure patterns (erasure model). We present an explicit intrasession code construction that is asymptotically optimal under erasure models containing a limited number of erasures per coding window, per sliding window, and containing erasure bursts of a limited length.Comment: Extended version of a conference paper in the IEEE International Symposium on Information Theory (ISIT), July 2012. 12 pages, 3 figure

    Mass Predictions of Open-Flavour Hybrid Mesons from QCD Sum Rules

    Full text link
    Within QCD, colourless states may be constructed corresponding to exotic matter outside of the traditional quark model. Experiments have recently observed tetraquark and pentaquark states, but no definitive hybrid meson signals have been observed. With the construction of the PANDA experiment at FAIR, and with full commissioning of the GlueX experiment at JLab expected to be completed this year, the opportunity for the observation of hybrid mesons has greatly increased. However, theoretical calculations are necessary to ascertain the identity of any experimental resonances that may be observed. We present selected QCD sum rule results from a full range of quantum numbers for open-flavour hybrid mesons with heavy valence quark content, including non-perturbative condensate contributions up to six-dimensions.Comment: Formatted from poster presented at 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, USA. 4 pages, 1 table and 2 figures. Submitted for publication in Proceedings of Science as PoS(ICHEP2016)849. Original poster attache

    Symmetric Allocations for Distributed Storage

    Full text link
    We consider the problem of optimally allocating a given total storage budget in a distributed storage system. A source has a data object which it can code and store over a set of storage nodes; it is allowed to store any amount of coded data in each node, as long as the total amount of storage used does not exceed the given budget. A data collector subsequently attempts to recover the original data object by accessing each of the nodes independently with some constant probability. By using an appropriate code, successful recovery occurs when the total amount of data in the accessed nodes is at least the size of the original data object. The goal is to find an optimal storage allocation that maximizes the probability of successful recovery. This optimization problem is challenging because of its discrete nature and nonconvexity, despite its simple formulation. Symmetric allocations (in which all nonempty nodes store the same amount of data), though intuitive, may be suboptimal; the problem is nontrivial even if we optimize over only symmetric allocations. Our main result shows that the symmetric allocation that spreads the budget maximally over all nodes is asymptotically optimal in a regime of interest. Specifically, we derive an upper bound for the suboptimality of this allocation and show that the performance gap vanishes asymptotically in the specified regime. Further, we explicitly find the optimal symmetric allocation for a variety of cases. Our results can be applied to distributed storage systems and other problems dealing with reliability under uncertainty, including delay tolerant networks (DTNs) and content delivery networks (CDNs).Comment: 7 pages, 3 figures, extended version of an IEEE GLOBECOM 2010 pape

    Aspects of Floquet Bands and Topological Phase Transitions in a Continuously Driven Superlattice

    Full text link
    Recently the creation of novel topological states of matter by a periodic driving field has attracted great attention. To motivate further experimental and theoretical studies, we investigate interesting aspects of Floquet bands and topological phase transitions in a continuously driven Harper model. In such a continuously driven system with an odd number of Floquet bands, the bands are found to have nonzero Chern numbers in general and topological phase transitions take place as we tune various system parameters, such as the amplitude or the period of the driving field. The nontrivial Floquet band topology results in a quantized transport of Wannier states in the lattice space. For certain parameter choices, very flat yet topologically nontrivial Floquet bands may also emerge, a feature that is potentially useful for the simulation of physics of strongly correlated systems. Some cases with an even number of Floquet bands may also have intriguing Dirac cones in the spectrum. Under open boundary conditions, anomalous counter-propagating chiral edge modes and degenerate zero modes are also found as the system parameters are tuned. These results should be of experimental interest because a continuously driven system is easier to realize than a periodically kicked system.Comment: 29 pages, 9 figures. Comments are welcom

    Optimal content delivery with network coding

    Get PDF
    We present a unified linear program formulation for optimal content delivery in content delivery networks (CDNs), taking into account various costs and constraints associated with content dissemination from the origin server to storage nodes, data storage, and the eventual fetching of content from storage nodes by end users. Our formulation can be used to achieve a variety of performance goals and system behavior, including the bounding of fetch delay, load balancing, and robustness against node and arc failures. Simulation results suggest that our formulation performs significantly better than the traditional minimum k-median formulation for the delivery of multiple content, even under modest circumstances (small network, few objects, low storage budget, low dissemination costs)

    Quantized Adiabatic Transport in Momentum Space

    Full text link
    Though topological aspects of energy bands are known to play a key role in quantum transport in solid-state systems, the implications of Floquet band topology for transport in momentum space (i.e., acceleration) are not explored so far. Using a ratchet accelerator model inspired by existing cold-atom experiments, here we characterize a class of extended Floquet bands of one-dimensional driven quantum systems by Chern numbers, reveal topological phase transitions therein, and theoretically predict the quantization of adiabatic transport in momentum space. Numerical results confirm our theory and indicate the feasibility of experimental studies.Comment: Main text of 11 pages plus Appendix of 13 pages. To appear in Phys. Rev. Let

    Distributed Storage Allocation Problems

    Get PDF
    We investigate the problem of using several storage nodes to store a data object, subject to an aggregate storage budget or redundancy constraint. It is challenging to find the optimal allocation that maximizes the probability of successful recovery by the data collector because of the large space of possible symmetric and nonsymmetric allocations, and the nonconvexity of the problem. For the special case of probability-l recovery, we show that the optimal allocation that minimizes the required budget is symmetric. We further explore several storage allocation and access models, and determine the optimal symmetric allocation in the high-probability regime for a case of interest. Based on our experimental investigation, we make a general conjecture about a phase transition on the optimal allocation
    corecore