79 research outputs found

    Are there any Landau poles in wavelet-based quantum field theory?

    Full text link
    Following previous work by one of the authors [M.V.Altaisky, Unifying renormalization group and the continuous wavelet transform, Phys. Rev. D 93, 105043 (2016).], we develop a new approach to the renormalization group, where the effective action functional ΓA[ϕ]\Gamma_A[\phi] is a sum of all fluctuations of scales from the size of the system LL down to the scale of observation AA. It is shown that the renormalization flow equation of the type ΓAlnA=Y(A) \frac{\partial \Gamma_A}{\partial \ln A}=-Y(A) is a limiting case of such consideration, when the running coupling constant is assumed to be a differentiable function of scale. In this approximation, the running coupling constant, calculated at one-loop level, suffers from the Landau pole. In general case, when the scale-dependent coupling constant is a non-differentiable function of scale, the Feynman loop expansion results in a difference equation. This keeps the coupling constant finite for any finite value of scale AA. As an example we consider Euclidean ϕ4\phi^4 field theory.Comment: RevTeX, 13 pages, 3 eps figure

    Stochastic magnetohydrodynamic turbulence in space dimensions d2d\ge 2

    Full text link
    Interplay of kinematic and magnetic forcing in a model of a conducting fluid with randomly driven magnetohydrodynamic equations has been studied in space dimensions d2d\ge 2 by means of the renormalization group. A perturbative expansion scheme, parameters of which are the deviation of the spatial dimension from two and the deviation of the exponent of the powerlike correlation function of random forcing from its critical value, has been used in one-loop approximation. Additional divergences have been taken into account which arise at two dimensions and have been inconsistently treated in earlier investigations of the model. It is shown that in spite of the additional divergences the kinetic fixed point associated with the Kolmogorov scaling regime remains stable for all space dimensions d2d\ge 2 for rapidly enough falling off correlations of the magnetic forcing. A scaling regime driven by thermal fluctuations of the velocity field has been identified and analyzed. The absence of a scaling regime near two dimensions driven by the fluctuations of the magnetic field has been confirmed. A new renormalization scheme has been put forward and numerically investigated to interpolate between the ϵ\epsilon expansion and the double expansion.Comment: 12 pages, 4 figure

    Functional Methods in Stochastic Systems

    Full text link
    Field-theoretic construction of functional representations of solutions of stochastic differential equations and master equations is reviewed. A generic expression for the generating function of Green functions of stochastic systems is put forward. Relation of ambiguities in stochastic differential equations and in the functional representations is discussed. Ordinary differential equations for expectation values and correlation functions are inferred with the aid of a variational approach.Comment: Plenary talk presented at Mathematical Modeling and Computational Science. International Conference, MMCP 2011, Star\'a Lesn\'a, Slovakia, July 4-8, 201

    Operator Approach to the Master Equation for the One-Step Process

    Full text link
    Presentation of the probability as an intrinsic property of the nature leads researchers to switch from deterministic to stochastic description of the phenomena. The procedure of stochastization of one-step process was formulated. It allows to write down the master equation based on the type of of the kinetic equations and assumptions about the nature of the process. The kinetics of the interaction has recently attracted attention because it often occurs in the physical, chemical, technical, biological, environmental, economic, and sociological systems. However, there are no general methods for the direct study of this equation. Leaving in the expansion terms up to the second order we can get the Fokker-Planck equation, and thus the Langevin equation. It should be clearly understood that these equations are approximate recording of the master equation. However, this does not eliminate the need for the study of the master equation. Moreover, the power series produced during the master equation decomposition may be divergent (for example, in spatial models). This makes it impossible to apply the classical perturbation theory. It is proposed to use quantum field perturbation theory for the statistical systems (the so-called Doi method). This work is a methodological material that describes the principles of master equation solution based on quantum field perturbation theory methods. The characteristic property of the work is that it is intelligible for non-specialists in quantum field theory. As an example the Verhulst model is used because of its simplicity and clarity (the first order equation is independent of the spatial variables, however, contains non-linearity). We show the full equivalence of the operator and combinatorial methods of obtaining and study of the one-step process master equation.Comment: in Russian; in Englis
    corecore