167 research outputs found

    Kohn-Luttinger instability of the t-t' Hubbard model in two dimensions: variational approach

    Full text link
    An effective Hamiltonian for the Kohn-Luttinger superconductor is constructed and solved in the BCS approximation. The method is applied to the t-t' Hubbard model in two dimensions with the following results: (i) The superconducting phase diagram at half filling is shown to provide a weak-coupling analog of the recently proposed spin liquid state in the J_1-J_2 Heisenberg model. (ii) In the parameter region relevant for the cuprates we have found a nontrivial energy dependence of the gap function in the dominant d-wave pairing sector. The hot spot effect in the angular dependence of the superconducting gap is shown to be quite weak

    Ferromagnetism in the two dimensional t-t' Hubbard model at the Van Hove density

    Full text link
    Using an improved version of the projection quantum Monte Carlo technique, we study the square-lattice Hubbard model with nearest-neighbor hopping t and next-nearest-neighbor hopping t', by simulation of lattices with up to 20 X 20 sites. For a given R=2t'/t, we consider that filling which leads to a singular density of states of the noninteracting problem. For repulsive interactions, we find an itinerant ferromagnet (antiferromagnet) for R=0.94 (R=0.2). This is consistent with the prediction of the T-matrix approximation, which sums the most singular set of diagrams.Comment: 10 pages, RevTeX 3.0 + a single postscript file with all figure

    Effects of Electronic Correlations on the Thermoelectric Power of the Cuprates

    Full text link
    We show that important anomalous features of the normal-state thermoelectric power S of high-Tc materials can be understood as being caused by doping dependent short-range antiferromagnetic correlations. The theory is based on the fluctuation-exchange approximation applied to Hubbard model in the framework of the Kubo formalism. Firstly, the characteristic maximum of S as function of temperature can be explained by the anomalous momentum dependence of the single-particle scattering rate. Secondly, we discuss the role of the actual Fermi surface shape for the occurrence of a sign change of S as a function of temperature and doping.Comment: 4 pages, with eps figure

    An electron correlation originated negative magnetoresistance in a system having a partly flat band

    Full text link
    Inspired from an experimentally examined organic conductor, a novel mechanism for negative magnetoresistance is proposed for repulsively interacting electrons on a lattice whose band dispersion contains a flat portion (a flat bottom below a dispersive part here). When the Fermi level lies in the flat part, the electron correlation should cause ferromagnetic spin fluctuations to develop with an enhanced susceptibility. A relatively small magnetic field will then shift the majority-spin Fermi level to the dispersive part, resulting in a negative magnetoresistance. We have actually confirmed the idea by calculating the conductivity in magnetic fields, with the fluctuation exchange approximation, for the repulsive Hubbard model on a square lattice having a large second nearest-neighbor hopping.Comment: RevTex, 5 figures in Postscript, to be published in Phys. Rev.

    First-order transition between a small-gap semiconductor and a ferromagnetic metal in the isoelectronic alloys FeSi1−x_{1-x}Gex_x

    Full text link
    The contrasting groundstates of isoelectronic and isostructural FeSi and FeGe can be explained within an extended local density approximation scheme (LDA+U) by an appropriate choice of the onsite Coulomb repulsion, UU on the Fe-sites. A minimal two-band model with interband interactions allows us to obtain a phase diagram for the alloys FeSi1−x_{1-x}Gex_{x}. Treating the model in a mean field approximation, gives a first order transition between a small-gap semiconductor and a ferromagnetic metal as a function of magnetic field, temperature, and concentration, xx. Unusually the transition from metal to insulator is driven by broadening, not narrowing, the bands and it is the metallic state that shows magnetic order.Comment: 4 pages, 5 figure
    • …
    corecore