1,383 research outputs found

    Socio-economic Analysis of Centralised Biogas Plants

    Get PDF
    The development of biogas technology in Denmark has been widely encouraged by the government over the last 15 years. The overall reasons for the government concern has been the increasing awareness that centralised biogas plants make a significant contribution to solve a range of problems in the fields of energy, agriculture and environment. This has been documented through related monitoring and R & D activities. To achieve a satisfactory evaluation of centralised biogas plants, a thorough socio – economic analysis is required. Such investigation has been accomplished, and the results are presented in this summary

    An Economic and Environmental Analysis of Slurry Separation

    Get PDF
    With increased pressure to redistribute animal manure in order to lower the environmental pressure from agriculture, it seems obvious to consider processing slurry into nutrient rich fractions which can easily be transported. In this paper, an overall analysis of four different separation technologies is presented. The four technologies are Decanter, Funki Manura 2000, Green Farm Energy and Staring. These technologies are all implemented on a full scale in Denmark. In this paper both the economic and environmental aspects are considered, looking at the entire chain from stable to the field. The total investments range from 50,000 to 4 million Euros and the total net costs are from 1 to 7 Euros per tonne for the four different technologies. One of the clear environmental benefits is a better utilisation of phosphorus, but using phytase in feeding is a cheaper first step when reducing phosphorus surplus. Improved nitrogen utilisation is only apparent with the Staring and Green Farm Energy concepts. The conclusion is that the Funki Manura 2000 system is too expensive and the Decanter system a fairly cheap way to reduce phosphorus levels, but other benefits are limited. Staring and Green Farm Energy show the greatest potential, but these systems have not been running long enough to validate the expected results included in this paper.Resource /Energy Economics and Policy,

    Exact Performance of a Semiparametric Density Estimator for Normal Mixture Truths

    Get PDF

    Quantum Transport through Organic Molecules

    Full text link
    We explore electron transport properties for the model of benzene-1, 4-dithiolate (BDT) molecule and for some other geometric models of benzene molecule attached to two semi-infinite one-dimensional metallic electrodes using the Green's function formalism. An analytic approach, based on a simple tight-binding framework, is presented to describe electron transport through the molecular wires. Electronic transport in such molecular systems is strongly affected by the geometry of the molecules as well as their coupling to the side-attached electrodes. Conductance reveals resonant peaks associated with the molecular energy eigenstates providing several complex spectra. Current passing through the molecules shows staircase-like behavior with sharp steps in the weak molecule-to-electrode coupling limit, while it varies quite continuously with the applied bias voltage in the limit of strong molecular coupling. In the presence of transverse magnetic field, conductance exhibits oscillatory behavior with flux Ï•\phi, threaded by the molecular ring, showing Ï•0\phi_0 (=ch/e=ch/e) flux-quantum periodicity. Though, conductance changes in the presence of transverse magnetic field, but the current-voltage characteristics are not significantly affected by this field.Comment: 11 pages, 8 figure

    Tuning of electron transport through a moebius strip: shot noise

    Full text link
    We explore electron transport through a moebius strip attached to two metallic electrodes by the use of Green's function technique. A parametric approach is used based on the tight-binding model to characterize the electron transport through such a bridge system and it is observed that the transport properties are significantly affected by (a) the transverse hopping strength between the two channels and (b) the strip-to-electrode coupling strength. In this context we also describe the noise power of the current fluctuations that provides a key information about the electron correlation which is obtained by calculating the Fano factor (FF). The knowledge of this current fluctuations gives important ideas for fabrication of efficient electronic devices.Comment: 9 pages, 8 figure

    Dose Optimization for Using the Contrast Agent Gadofosveset in Magnetic Resonance Imaging (MRI) of Domestic Pig Brain

    Get PDF
    Pigs are useful models in stroke research, and Magnetic Resonance Imaging (MRI) is a useful tool for measurements of brain pathophysiology. Perfusion Weighed Imaging (PWI) with standard Gd-based chelates (i.e. gadobutrol) provides crucial information about breakdown of the Blood-Brain-Barrier (BBB) in patients. Gadofosveset is also a Gd-based contrast agent, but with a higher binding to serum albumin. The prolonged plasma-half life of gadofosveset allows the acquisition of steady state angiographies, which may increase the sensitivity for detection of BBB leakage. We hypothesize that the contrast dosage with gadofosveset can be optimized for PWI and subsequent steady-state Magnetic Resonance Angiography (MRA) in pigs. Anesthetized domestic pigs (females; N=6) were MRI scanned four times in one day: they were initially imaged during a standard gadobutrol bolus injection (0.1 mmol/kg). Then they received three successive gadofosveset bolus injections of varying dosages (0.015-0.09 mmol/kg). Based on projection from our data, we suggest that a bolus injection of 0.0916 mmol/kg gadofosveset would yield contrast similar to that of a standard dose of 0.1 mmol/kg gadobutrol in dynamic susceptibility contrast MRI at 3 T. In conclusion, our results demonstrate the feasibility of gadofosveset based PWI in pig brain research. The relaxation and plasma half-life properties allow detailed steady-state MRA angiographies and may prove useful in detecting subtle BBB disruption of significance in stroke models and human patients

    Leukocyte telomere length is associated with elevated plasma glucose and HbA1c in young healthy men independent of birth weight.

    Get PDF
    Telomeres are protein-bound regions of repetitive nucleotide sequences (TTAGGG) at the end of human chromosomes, and their length is a marker of cellular aging. Intrauterine growth restriction is associated with shorter blood cell telomeres at birth and individuals with type 2 diabetes have shorter telomeres. Individuals with a low birth weight (LBW) have an increased risk of metabolic disease and type 2 diabetes. Therefore, we aimed to investigate the relationship between birth weight and telomere length and the association between birth weight, telomere length and cardiometabolic phenotype in adulthood. Young, healthy men with LBW (n = 55) and normal birth weight (NBW) (n = 65) were examined including blood pressure, blood samples and body composition. Leukocyte telomere length was determined using a high-throughput qPCR method. The LBW men were more insulin resistant as determined by the HOMA-IR index. There was no difference in telomere length between LBW and NBW subjects. When adjusting for birth weight and cohort effect, significant negative associations between telomere length and fasting glucose (P = 0.003) and HbA1c (P = 0.0008) were found. In conclusion, no significant difference in telomere length was found between LBW and NBW men. The telomere length was negatively associated with glucose concentrations and HbA1c levels within the normal non-diabetic range independent of birth weight
    • …
    corecore