5 research outputs found
A clinically validated Drosophila S2 based vaccine platform for production of malaria vaccines
Drosophila S2 insect cell expression is less known than the extensively used Spodoptera or Trichoplusia ni (Hi-5) insect cell based Baculovirus expression system (BEVS). Nevertheless it has been used in research for almost 40 years. The cell line was derived from late stage Drosophila melanogaster (Fruit fly) embryos by Schneider in the 1970s, who named the cell line Drosophila Schneider line 2 (synonyms: S2, SL2, D.mel. 2). The system has been widely applied to fundamental research, where the availability of the whole genome sequence of Drosophila melanogaster (1, 2) and the S2 cells’ susceptibility to RNA interference methods (3, 4) have enabled genome wide RNAi screening and whole genome expression analysis techniques to be used to great effect. S2 cells have proved to be highly effective for the production of proteins from a great variety of protein classes (5), such as: viral proteins, toxins, membrane proteins, enzyme, etc. Recent publications have also shown the strength of the S2 system in expression of Virus Like Particles (VLPs) (6).
ExpreS2ion has developed the ExpreS2, Drosophila S2 platform to achieve improved yields for difficult to express proteins. Furthermore, several technologies have been developed to improve the ease of use of the system, as well as enable fast and efficient screening of multiple constructs.
S2 based production processes for two malaria vaccine clinical trails with The Jenner Institute, Oxford University (Rh5 (7,8), blood-stage malaria) and Copenhagen University (VAR2CSA (9) pregnancy associated malaria) have been developed. The placental malaria vaccine is currently in a phase Ia trail in Germany, and a Phase Ib trial in Benin. The blood-stage malaria vaccine is currently in Phase IIa trial and is expecting results by the end of 2018.
Several transmission-blocking candidates have been identified over the years with some of the most prominent being pfs48/45, Pfs230C and Pfs25(10). Other vaccine targets focus on blood-stage malaria such as Rh5, PfRIPR and CyrPA. We will present data on the development of a high producing Pfs25 monoclonal cell line and the purification from said cell line,as well as expression data on a range of other malaria vaccine targets.
This present the clinically validated ExpreS2 platform as a complete system for a wide range of malaria targeting vaccines.
(1) Adams M.D. et al. Science 2000 287:2185-2195
(2) Ashburner M, et al. Genome Res. 2005 Dec;15(12):1661-7
(3) Neumüller RA, et al. Wiley Interdiscip Rev Syst Biol Med. 2011 Jul-Aug; 3(4):471-8
(4) D’Ambrosio M.V. et al. J. Cell Biol. Vol. 191 No. 3 471–478
(5) Schetz J.A. et al. Protein Expression in the Drosophila Schneider 2 Cell System, Current Protocols in Neuroscience, 2004
(6) Yang L. et al. J Virol. 2012, Jul;86(14):7662-76.
(7) Wright K.E. et al. Nature, 2014 Nov 20;515(7527):427-30
(8) Hjerrild K.A. et al. Sci Rep. 2016 Jul 26;6:30357
(9) Nielsen M.A. et al. PLoS One. 2015 Sep 1;10(9):e0135406
(10) Chaturvedi N et al. Indian J Med Res. 2016 Jun;143(6):696-71
A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys
SummaryAntigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans
Lateral Flow Immunoassay for Diagnosis of Trypanosoma cruzi Infection with High Correlation to the Radioimmunoprecipitation Assay▿
The incidence of blood donors seropositive for Trypanosoma cruzi in North America has increased with population migration and more rigorous surveillance. The United States, considered nonendemic for T. cruzi, could therefore be at risk to exposure to parasite transmission through blood or organ donations. Current tests show variable reactivity, especially with Central American sera. Here we describe the development of a lateral flow immunoassay for the rapid detection of T. cruzi infection that has a strong correlation to the radioimmunoprecipitation assay (RIPA) “gold standard” in the United States. Such a test could have utility in small blood banks for prescreening donors, as well as in cardiac transplantation evaluation. T. cruzi consensus and/or RIPA-positive sera from Central and South America were evaluated in enzyme immunoassays (EIAs). These included commercial panels from Boston Biomedica, Inc. (BBI) (n = 14), and HemaBio (n = 21). Other sources included RIPA-positive sera from the American Red Cross (ARC) (n = 42), as well as from Chile. Sera were tested with the multiepitope recombinant TcF. All but one of the BBI samples were positive and 7 of 21 HemaBio samples and 6 of 42 ARC samples were low positive or negative. This observation indicated the need for additional antigens. To complement TcF reactivity, we tested the sera with peptides 30, 36, SAPA, and 1.1, 1.2, and 1.3 His fragments of 85-kDa trans-sialidase. We identified a promising combination of the tested antigens and constructed a single recombinant protein, ITC6, that enhanced the relative sensitivity in U.S. blood donor sera compared to that of TcF. The data on its evaluation using RIPA-confirmed positive sera in EIA and lateral flow immunoassay studies are presented, along with an additional recombinant protein, ITC8.2, with two additional sequences for peptide 1 and Kmp-11. The latter, when evaluated in a dipstick assay with consensus positive sera, had a sensitivity of 99.2% and a specificity of 99.1%