23 research outputs found
Recommended from our members
Resonant Soft X-Ray Contrast Variation Methods as Composition-Specific Probes of Thin Polymer Film Structure
We have developed complementary soft x-ray scattering and reflectometry techniques that allow for the morphological analysis of thin polymer films without resorting to chemical modification or isotopic 2 labeling. With these techniques, we achieve significant, x-ray energy-dependent contrast between carbon atoms in different chemical environments using soft x-ray resonance at the carbon edge. Because carbon-containing samples absorb strongly in this region, the scattering length density depends on both the real and imaginary parts of the atomic scattering factors. Using a model polymer film of poly(styrene-b-methyl methacrylate), we show that the soft x-ray reflectivity data is much more sensitive to these atomic scattering factors than the soft x-ray scattering data. Nevertheless, fits to both types of data yield useful morphological details on the polymer?slamellar structure that are consistent with each other and with literature values
Recommended from our members
A Workshop on Methods for Neutron Scattering Instrument Design. Introduction and Summary
The future of neutron and x-ray scattering instrument development and international cooperation was the focus of the workshop on ``Methods for Neutron Scattering Instrument Design`` September 23-25 at the E.O. Lawrence Berkeley National Laboratory. These proceedings are a collection of a portion of the invited and contributed presentations
Recommended from our members
Small-angle neutron scattering at pulsed sources compared to reactor sources
Detailed comparisons of measurements made on small-angle neutron scattering instruments at pulsed spallation and reactor sources show that the results from the two types of instruments are comparable. It is further demonstrated that spallation instruments are preferable for measurements in the mid-momentum transfer domain or when a large domain is needed. 8 refs., 2 figs
The microstructure and morphology of carbon black: A study using small angle neutron scattering and contrast variation
This is a study of the microstructure of particles of an experimental high surface area carbon black (HSA) and of the morphology of the particle aggregates using small-angle neutron scattering and the method of contrast variation. Contrast variation was effected by studying suspensions of the carbon black in cyclohexane containing different fractions of deuterocyclohexane. We find that the approximately 29 nm diameter HSA particles are arranged as small, linear aggregates with average aggregation number between 4 and 6. The structure averaged over the particle population is best represented by a prolate ellipsoid of revolution with semi axes 14.5 and 76.4 nm. The surface of the aggregates appears smooth over length scales longer than 1 nm, which places an upper limit on the surface roughness observed by other methods. The intemal structure of the aggregates is described by a shell-core model, with the shell density being consistent with a graphitic structure and the core being of lower density, more like amorphous carbon. Some fraction of the core volume (0.1 to 0.2) is taken up by voids that are not accessible to the solvent. An estimate of the shell thickness gives 1 to 2 nm along the ellipsoid minor axis and 6 to 10 nm along the major axis. The particles of the aggregate appear to be fused so that the less dense amorphous core is continuous through the inner parts of the aggregate. The information that can be obtained on the internal structure using contrast variation is limited by nonheterogeneity in the chemical composition of carbon black aggregates
Non-Equilibrium Behavior in Egg Phosphatidylcholine-Bile Salt Mixed Aqueous Colloids
Aqueous mixed colloids of bile salt and phosphatidylcholine have particle morphologies that are highly dependent on total lipid concentration. Starting at the highest concentrations globular mixed micelles are found. These elongate into rods with dilution, and then transform into vesicles at the lowest lipid concentrations. Little is known of the mechanism of these concentration-dependent transformations. Here, we report observations from static and dynamic light scattering on egg phosphatidylcholine-glycocholate mixtures, showing that the system passes through a series of large structures upon dilution. As the mixed colloid is diluted to concentrations close to or at the vesicle transition, a well defined structure is formed initially, which is likely to be an aggregate of mixed micelles. This structure then undergoes a series of transformations. The discovery of this structure could be an important clue in understanding the transition from rod-like to vesicle forms
Recommended from our members
Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra-small-angle neutron scattering with contrast variation
We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change