3 research outputs found
Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial
© 2019 The Authors Objective: Growth hormone (GH) stimulates lipolysis, but the underlying mechanisms remain incompletely understood. We examined the effect of GH on the expression of lipolytic regulators in adipose tissue (AT). Methods: In a randomized, placebo-controlled, cross-over study, nine men were examined after injection of 1) a GH bolus and 2) a GH-receptor antagonist (pegvisomant) followed by four AT biopsies. In a second study, eight men were examined in a 2 × 2 factorial design including GH infusion and 36-h fasting with AT biopsies obtained during a basal period and a hyperinsulinemic-euglycemic clamp. Expression of GH-signaling intermediates and lipolytic regulators were studied by PCR and western blotting. In addition, mechanistic experiments in mouse models and 3T3-L1 adipocytes were performed. Results: The GH bolus increased circulating free fatty acids (p \u3c 0.0001) together with phosphorylation of signal transducer and activator of transcription 5 (STAT5) (p \u3c 0.0001) and mRNA expression of the STAT5-dependent genes cytokine-inducible SH2-containing protein (CISH) and IGF-1 in AT. This was accompanied by suppressed mRNA expression of G0/G1 switch gene 2 (G0S2) (p = 0.007) and fat specific protein 27 (FSP27) (p = 0.002) and upregulation of phosphatase and tensin homolog (PTEN) mRNA expression (p = 0.03). Suppression of G0S2 was also observed in humans after GH infusion and fasting, as well as in GH transgene mice, and in vitro studies suggested MEK-PPARγ signaling to be involved. Conclusions: GH-induced lipolysis in human subjects in vivo is linked to downregulation of G0S2 and FSP27 and upregulation of PTEN in AT. Mechanistically, in vitro data suggest that GH acts via MEK to suppress PPARγ-dependent transcription of G0S2. ClinicalTrials.gov NCT02782221 and NCT01209429
Effects of protein intake prior to carbohydrate-restricted endurance exercise:a randomized crossover trial
Background Deliberately training with reduced carbohydrate availability, a paradigm coined training low, has shown to promote adaptations associated with improved aerobic capacity. In this context researchers have proposed that protein may be ingested prior to training as a means to enhance the protein balance during exercise without spoiling the effect of the low carbohydrate availability. Accordingly, this is being practiced by world class athletes. However, the effect of protein intake on muscle protein metabolism during training low has not been studied. This study aimed to examine if protein intake prior to exercise with reduced carbohydrate stores benefits muscle protein metabolism in exercising and non-exercising muscles. Methods Nine well-trained subjects completed two trials in random order both of which included a high-intensity interval ergometer bike ride (day 1), a morning (day 2) steady state ride (90 min at 65% VO2peak, 90ss), and a 4-h recovery period. An experimental beverage was consumed before 90ss and contained either 0.5 g whey protein hydrolysate [WPH]/ kg lean body mass or flavored water [PLA]. A stable isotope infusion (L-[ring-13C6]-phenylalanine) combined with arterial-venous blood sampling, and plasma flow rate measurements were used to determine forearm protein turnover. Myofibrillar protein synthesis was determined from stable isotope incorporation into the vastus lateralis. Results Forearm protein net balance was not different from zero during 90ss exercise (nmol/100 ml/min, PLA: 0.5 ± 2.6; WPH: 1.8, ± 3.3) but negative during the 4 h recovery (nmol/100 ml/min, PLA: − 9.7 ± 4.6; WPH: − 8.7 ± 6.5); no interaction (P = 0.5) or main effect of beverage (P = 0.11) was observed. Vastus lateralis myofibrillar protein synthesis rates were increased during 90ss exercise (+ 0.02 ± 0.02%/h) and recovery (+ 0.02 ± 0.02%/h); no interaction (P = 0.3) or main effect of beverage (P = 0.3) was observed. Conclusion We conclude that protein ingestion prior to endurance exercise in the energy- and carbohydrate-restricted state does not increase myofibrillar protein synthesis or improve net protein balance in the exercising and non-exercising muscles, respectively, during and in the hours after exercise compared to ingestion of a non-caloric control. Trial registration clinicaltrials.gov, NCT01320449. Registered 10 May 2017 – Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT0314700