658 research outputs found

    Structure and kinematics of the molecular spiral arms in M51

    Get PDF
    Mapping of the CO(1-0) emission from the spiral galaxy was made with the Onsala 20 m antenna. The observations show that the emission is considerably enhanced in spiral arms which appear to originate as intense ridges of emission about 1 kpc from the nucleus. One of the main objectives for the 1986 observations was to study the variations of the tangential velocity component of molecular gas across a spiral arm. The radial velocity was found to have a velocity shift similar to that predicted by the density wave theory. The present (1986) observations of the inner southern spiral arm of M51 show that the tangential velocity component also behaves in a way which conforms with the density wave model. The molecular arms were compared with the H alpha ionized gas arms of Tully (1974) and it was found that the ionized gas appears to have its maximum intensity slightly outside the molecular arm

    On the accretion process in a high-mass star forming region - A multitransitional THz Herschel-HIFI study of ammonia toward G34.26+0.15

    Full text link
    [Abridged] Our aim is to explore the gas dynamics and the accretion process in the early phase of high-mass star formation. The inward motion of molecular gas in the massive star forming region G34.26+0.15 is investigated by using high-resolution profiles of seven transitions of ammonia at THz frequencies observed with Herschel-HIFI. The shapes and intensities of these lines are interpreted in terms of radiative transfer models of a spherical, collapsing molecular envelope. An accelerated Lambda Iteration (ALI) method is used to compute the models. The seven ammonia lines show mixed absorption and emission with inverse P-Cygni-type profiles that suggest infall onto the central source. A trend toward absorption at increasingly higher velocities for higher excitation transitions is clearly seen in the line profiles. The J=32J = 3\leftarrow2 lines show only very weak emission, so these absorption profiles can be used directly to analyze the inward motion of the gas. This is the first time a multitransitional study of spectrally resolved rotational ammonia lines has been used for this purpose. Broad emission is, in addition, mixed with the absorption in the 10001_0-0_0 ortho-NH3_3 line, possibly tracing a molecular outflow from the star forming region. The best-fitting ALI model reproduces the continuum fluxes and line profiles, but slightly underpredicts the emission and absorption depth in the ground-state ortho line 10001_0-0_0. The derived ortho-to-para ratio is approximately 0.5 throughout the infalling cloud core similar to recent findings for translucent clouds in sight lines toward W31C and W49N. We find evidence of two gas components moving inwards toward the central region with constant velocities: 2.7 and 5.3 km\,s1^{-1}, relative to the source systemic velocity. The inferred mass accretion rates derived are sufficient to overcome the expected radiation pressure from G34.26+0.15.Comment: 20 pages, 18 figures, accepted by A&A 3 October 201

    Electric Field Control of Shallow Donor Impurities in Silicon

    Full text link
    We present a tight-binding study of donor impurities in Si, demonstrating the adequacy of this approach for this problem by comparison with effective mass theory and experimental results. We consider the response of the system to an applied electric field: donors near a barrier material and in the presence of an uniform electric field may undergo two different ionization regimes according to the distance of the impurity to the Si/barrier interface. We show that for impurities ~ 5 nm below the barrier, adiabatic ionization is possible within switching times of the order of one picosecond, while for impurities ~ 10 nm or more below the barrier, no adiabatic ionization may be carried out by an external uniform electric field. Our results are discussed in connection with proposed Si:P quantum computer architectures.Comment: 18 pages, 6 figures, submitted to PR

    Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy)

    Full text link
    The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in March-April 2013 and January 2015, combined with the improved observational capabilities of submillimeter facilities, offered an opportunity to carry out sensitive compositional and isotopic studies of the volatiles in their coma. We observed comet Lovejoy with the IRAM 30m telescope between 13 and 26 January 2015, and with the Odin submillimeter space observatory on 29 January - 3 February 2015. We detected 22 molecules and several isotopologues. The H216_2^{16}O and H218_2^{18}O production rates measured with Odin follow a periodic pattern with a period of 0.94 days and an amplitude of ~25%. The inferred isotope ratios in comet Lovejoy are 16^{16}O/18^{18}O = 499 ±\pm 24 and D/H = 1.4 ±\pm 0.4 ×104\times 10^{-4} in water, 32^{32}S/34^{34}S = 24.7 ±\pm 3.5 in CS, all compatible with terrestrial values. The ratio 12^{12}C/13^{13}C = 109 ±\pm 14 in HCN is marginally higher than terrestrial and 14^{14}N/15^{15}N = 145 ±\pm 12 in HCN is half the Earth ratio. Several upper limits for D/H or 12C/13C in other molecules are reported. From our observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio in an Oort Cloud comet that is not larger than the terrestrial value. On the other hand, the observation of the same HDO line in the other Oort-cloud comet, C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous measurements of D/H in cometary water, this illustrates that a diversity in the D/H ratio and in the chemical composition, is present even within the same dynamical group of comets, suggesting that current dynamical groups contain comets formed at very different places or times in the early solar system.Comment: Accepted for publication in Astronomy and Astrophysic

    Submillimeter Emission from Water in the W3 Region

    Full text link
    We have mapped the submillimeter emission from the 1(10)-1(01) transition of ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3 IRS5 region reveals strong water lines at half the positions in the map. The relative strength of the Odin lines compared to previous observations by SWAS suggests that we are seeing water emission from an extended region. Across much of the map the lines are double-peaked, with an absorption feature at -39 km/s; however, some positions in the map show a single strong line at -43 km/s. We interpret the double-peaked lines as arising from optically thick, self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted lines originate in emission near W3 IRS4. In this model, the unusual appearance of the spectral lines across the map results from a coincidental agreement in velocity between the emission near W3 IRS4 and the blue peak of the more complex lines near W3 IRS5. The strength of the water lines near W3 IRS4 suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page

    Observation of water vapor in the stratosphere of Jupiter with the Odin Space Telescope.

    Get PDF
    International audienceThe water vapor line at 557 GHz has been observed with the Odin space telescope with a high signal-to-noise ratio and a high spectral resolution on November 8, 2002. The analysis of this observation as well as a re-analysis of previously published observations obtained with the SubmillimeterWavelength Astronomy Satellite seem to favor a cometary origin (Shoemaker-Levy 9) for water in the stratosphere of Jupiter, in agreement with the ISO observation results. Our model predicts that the water line should become fainter and broader from 2007. The observation of such a temporal variablity would be contradictory with an IDP steady flux, thussupporting the SL9 source hypothesis

    Herschel Search for O_2 toward the Orion Bar

    Get PDF
    We report the results of a search for molecular oxygen (O_2) toward the Orion Bar, a prominent photodissociation region at the southern edge of the H II region created by the luminous Trapezium stars. We observed the spectral region around the frequency of the O_2 NJ = 33-12 transition at 487 GHz and the 5_(4)-3_(4) transition at 774 GHz using the Heterodyne Instrument for the Far-Infrared on the Herschel Space Observatory. Neither line was detected, but the 3σ upper limits established here translate to a total line-of-sight O2 column density <1.5 × 10^(16) cm^(–2) for an emitting region whose temperature is between 30 K and 250 K, or <1 × 10^(16) cm^(–2) if the O_2 emitting region is primarily at a temperature of ≲100 K. Because the Orion Bar is oriented nearly edge-on relative to our line of sight, the observed column density is enhanced by a factor estimated to be between 4 and 20 relative to the face-on value. Our upper limits imply that the face-on O_2 column density is less than 4 × 10^(15) cm^(–2), a value that is below, and possibly well below, model predictions for gas with a density of 10^(4)-10^(5) cm^(–3) exposed to a far-ultraviolet flux 10^4 times the local value, conditions inferred from previous observations of the Orion Bar. The discrepancy might be resolved if (1) the adsorption energy of O atoms to ice is greater than 800 K; (2) the total face-on A V of the Bar is less than required for O_2 to reach peak abundance; (3) the O_2 emission arises within dense clumps with a small beam filling factor; or (4) the face-on depth into the Bar where O_2 reaches its peak abundance, which is density dependent, corresponds to a sky position different from that sampled by our Herschel beams

    Searching for O2_2 in the SMC:Constraints on Oxygen Chemistry at Low Metallicities

    Full text link
    We present a 39 h integration with the Odin satellite on the ground-state 118.75 GHz line of O2 towards the region of strongest molecular emission in the Small Magellanic Cloud. Our 3sigma upper limit to the O2 integrated intensity of <0.049 K km/s in a 9'(160 pc) diameter beam corresponds to an upper limit on the O2/H2 abundance ratio of <1.3E-6. Although a factor of 20 above the best limit on the O2 abundance obtained for a Galactic source, our result has interesting implications for understanding oxygen chemistry at sub-solar metal abundances. We compare our abundance limit to a variety of astrochemical models and find that, at low metallicities, the low O2 abundance is most likely produced by the effects of photo-dissociation on molecular cloud structure. Freeze-out of molecules onto dust grains may also be consistent with the observed abundance limit, although such models have not yet been run at sub-solar initial metallicities.Comment: 4 pages, accepted to A&A Letter
    corecore