2 research outputs found

    Optimization of surface-mount-device light-emitting diode packaging : investigation of effects of component optical properties on light extraction efficiency

    Get PDF
    An investigation of the effects of the optical properties of surface-mount-device (SMD) light-emitting diode (LED) (side-view and top-view LEDs) packaging (PKG) components on the light extraction efficiency ηPKG using ray-tracing simulations is presented. In particular, it is found that the optical properties of the PKG resin and the lead-frame (L/F) silver-plating significantly affect ηPKG. Thus, the effects of the surface reflection methods of these components are investigated in order to optimize the optical design of the LED PKG. It is shown that there exists peak extraction efficiency for each PKG, and the cavity angle formed by the cavity wall is important to the optical design. In addition, the effect of phosphor present in the mold resin is examined using a Mie scattering simulation. Finally, an SMD LED PKG optical design method is proposed on the basis of the simulation results

    Optimization of surface-mount-device light-emitting diode packaging: investigation of effects of component optical properties on light extraction efficiency

    No full text
    An investigation of the effects of the optical properties of surface-mount-device (SMD) light-emitting diode (LED) (side-view and top-view LEDs) packaging (PKG) components on the light extraction efficiency η PKG using ray-tracing simulations is presented. In particular, it is found that the optical properties of the PKG resin and the lead-frame (L/F) silver-plating significantly affect η PKG . Thus, the effects of the surface reflection methods of these components are investigated in order to optimize the optical design of the LED PKG. It is shown that there exists peak extraction efficiency for each PKG, and the cavity angle formed by the cavity wall is important to the optical design. In addition, the effect of phosphor present in the mold resin is examined using a Mie scattering simulation. Finally, an SMD LED PKG optical design method is proposed on the basis of the simulation results
    corecore