35 research outputs found

    Animal models for the study of primary and secondary hypertension in humans.

    Get PDF
    This is the final version of the article. It first appeared from Spandidos Publications via http://dx.doi.org/10.3892/br.2016.784Hypertension is a significant cause of morbidity and mortality worldwide. It is defined as systolic and diastolic blood pressures (SBP/DBP) >140 and 90 mmHg, respectively. Individuals with an SBP between 120 and 139, or DBP between 80 and 89 mmHg, are said to exhibit pre-hypertension. Hypertension can have primary or secondary causes. Primary or essential hypertension is a multifactorial disease caused by interacting environmental and polygenic factors. Secondary causes are renovascular hypertension, renal disease, endocrine disorders and other medical conditions. The aim of the present review article was to examine the different animal models that have been generated for studying the molecular and physiological mechanisms underlying hypertension. Their advantages, disadvantages and limitations will be discussed.Biotechnology and Biological Sciences Research Council (Doctoral Training Award), Economic and Social Research Counci

    Animal models of atherosclerosis.

    Get PDF
    Atherosclerosis is a significant cause of morbidity and mortality globally. Many animal models have been developed to study atherosclerosis, and permit experimental conditions, diet and environmental risk factors to be carefully controlled. Pathophysiological changes can be produced using genetic or pharmacological means to study the harmful consequences of different interventions. Experiments using such models have elucidated its molecular and pathophysiological mechanisms, and provided platforms for pharmacological development. Different models have their own advantages and disadvantages, and can be used to answer different research questions. In the present review article, different species of atherosclerosis models are outlined, with discussions on the practicality of their use for experimentation.GT was supported by a BBSRC Doctoral Training Award and thanks the Croucher Foundation of Hong Kong for the generous support of his clinical assistant professorship. YC is supported by the ESRC

    Intermittent Hypoxia Exposure Helps to Restore the Reduced Hemoglobin Concentration During Intense Exercise Training in Trained Swimmers

    Get PDF
    In prolonged intense exercise training, the training load of athletes may be reduced once their hemoglobin concentrations ([Hb]s) are decreased dramatically. We previously reported that intermittent hypoxia exposure (IHE) could be used to alleviate the decrease of [Hb] and help to maintain the training load in rats. To further explore the feasibility of applying IHE intervention to athletes during prolonged intense exercise training, 6 trained swimmers were recruited to conduct a 4-week IHE intervention at the intervals after their [Hb] dropped for 10% or more during their training season. IHE intervention lasted 1 h and took place once a day and five times a week. Hematological and hormonal parameters, including [Hb], red blood cells (RBC), hematocrit (Hct), reticulocytes, serum erythropoietin (EPO), testosterone (T) and cortisol (C) were examined. After the IHE intervention was launched, [Hb], RBC and Hct of the subjects were increased progressively with their maximum levels (P < 0.01) showing at the third or fourth week, respectively. An increase in reticulocyte count (P < 0.01) suggests that IHE intervention promotes erythropoiesis to increase [Hb]. Besides, serum level of EPO, the hormone known to stimulate erythropoiesis, was overall higher than that before the IHE intervention, although it was statistically insignificant. Furthermore, the serum level of T, another hormone known to stimulate erythropoiesis, was increased progressively with the maximum level showing at the fourth week. Collectively, this study further confirms that IHE intervention may be used as a new strategy to prevent intense exercise training-induced reductions in [Hb]

    Animal models of atherosclerosis.

    Get PDF
    Atherosclerosis is a significant cause of morbidity and mortality globally. Many animal models have been developed to study atherosclerosis, and permit experimental conditions, diet and environmental risk factors to be carefully controlled. Pathophysiological changes can be produced using genetic or pharmacological means to study the harmful consequences of different interventions. Experiments using such models have elucidated its molecular and pathophysiological mechanisms, and provided platforms for pharmacological development. Different models have their own advantages and disadvantages, and can be used to answer different research questions. In the present review article, different species of atherosclerosis models are outlined, with discussions on the practicality of their use for experimentation.GT was supported by a BBSRC Doctoral Training Award and thanks the Croucher Foundation of Hong Kong for the generous support of his clinical assistant professorship. YC is supported by the ESRC

    Origin and Control of OFF-State Leakage Current in GaN-on-Si Vertical Diodes

    Get PDF
    Conventional GaN vertical devices, though promising for high-power applications, need expensive GaN substrates. Recently, low-cost GaN-on-Si vertical diodes have been demonstrated for the first time. This paper presents a systematic study to understand and control the OFF-state leakage current in the GaN-on-Si vertical diodes. Various leakage sources were investigated and separated, including leakage through the bulk drift region, passivation layer, etch sidewall, and transition layers. To suppress the leakage along the etch sidewall, an advanced edge termination technology has been developed by combining plasma treatment, tetramethylammonium hydroxide wet etching, and ion implantation. With this advanced edge termination technology, an OFF-state leakage current similar to Si, SiC, and GaN lateral devices has been achieved in the GaN-on-Si vertical diodes with over 300 V breakdown voltage and 2.9-MV/cm peak electric field. The origin of the remaining OFF-state leakage current can be explained by a combination of electron tunneling at the p-GaN/drift-layer interface and carrier hopping between dislocation traps. The low leakage current achieved in these devices demonstrates the great potential of the GaN-on-Si vertical device as a new low-cost candidate for high-performance power electronics

    Prevalence and Risk Factors of Human Papillomavirus (HPV) Infection in Southern Chinese Women – A Population-Based Study

    Get PDF
    Background: Persistent high-risk type Human papillomavirus (HPV) infection is recognized as a necessary cause of cervical cancer. This study aimed to compare the HPV prevalence and risk factors between women residing in Hong Kong (HK) and Guangzhou (GZ) region of China. Methodology/Principal Findings: A total of 1,570 and 1,369 women were recruited from HK and GZ, respectively. The cytology samples were collected and tested for HPV infection. The overall and type-specific HPV prevalence and the potential risk factors for acquisition of HPV infection were studied. Women with normal cytology in the GZ cohort had significantly higher HPV prevalence (10%) than those in the HK cohort (6.2%, p<0.001). The patterns of the age-specific HPV prevalence were also different between the two cohorts. In the HK cohort, women at the age of 20-29 years old had the highest prevalence and a second peak was observed in the age of ≥60 years old. In the GZ cohort, the highest HPV prevalence was also observed in 20-29 years old but declined as the age increased and a second peak was not seen. HPV16 and HPV52 were the most common high-risk types found in the HK and GZ cohorts, respectively. Age was the most consistently observed independent risk factor for HPV infection in the HK, while the number of sexual partners had association in the GZ cohort. Conclusions/Significance: Our study provides the current status and the epidemiological characteristics of HPV prevalence in Southern Chinese women. The results strongly suggested that population education and the effective cervical cancer screening would be vital in the prevention of cervical cancer. © 2011 Liu et al.published_or_final_versio

    Uncoupling Protein-4 (UCP4) Increases ATP Supply by Interacting with Mitochondrial Complex II in Neuroblastoma Cells

    Get PDF
    Mitochondrial uncoupling protein-4 (UCP4) protects against Complex I deficiency as induced by 1-methyl-4-phenylpyridinium (MPP+), but how UCP4 affects mitochondrial function is unclear. Here we investigated how UCP4 affects mitochondrial bioenergetics in SH-SY5Y cells. Cells stably overexpressing UCP4 exhibited higher oxygen consumption (10.1%, p<0.01), with 20% greater proton leak than vector controls (p<0.01). Increased ATP supply was observed in UCP4-overexpressing cells compared to controls (p<0.05). Although state 4 and state 3 respiration rates of UCP4-overexpressing and control cells were similar, Complex II activity in UCP4-overexpressing cells was 30% higher (p<0.05), associated with protein binding between UCP4 and Complex II, but not that of either Complex I or IV. Mitochondrial ADP consumption by succinate-induced respiration was 26% higher in UCP4-overexpressing cells, with 20% higher ADP:O ratio (p<0.05). ADP/ATP exchange rate was not altered by UCP4 overexpression, as shown by unchanged mitochondrial ADP uptake activity. UCP4 overexpression retained normal mitochondrial morphology in situ, with similar mitochondrial membrane potential compared to controls. Our findings elucidate how UCP4 overexpression increases ATP synthesis by specifically interacting with Complex II. This highlights a unique role of UCP4 as a potential regulatory target to modulate mitochondrial Complex II and ATP output in preserving existing neurons against energy crisis

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore