3,036 research outputs found

    Global Fits of the CKM Matrix

    Full text link
    We report upon the present status of global fits to Cabibbo-Kobayashi-Maskawa matrix.Comment: 3 pages, 3 figures invited talk presented at EPS conference, Aachen July 17-2

    Limits on Ï„ lepton-flavor violating decays into three charged leptons

    Get PDF
    A search for the neutrinoless, lepton-flavor violating decay of the τ lepton into three charged leptons has been performed using an integrated luminosity of 468  fb^(-1) collected with the BABAR detector at the PEP-II collider. In all six decay modes considered, the numbers of events found in data are compatible with the background expectations. Upper limits on the branching fractions are set in the range (1.8–3.3)×10^(-8) at 90% confidence level

    Observation of η_c(1S) and η_c(2S) decays to K^+K^-π^+π^-π^0 in two-photon interactions

    Get PDF
    We study the processes γγ→K_S^0K^±π^∓ and γγ→K^+K^-π^+π-π^0 using a data sample of 519.2fb^(-1) recorded by the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at center-of-mass energies near the Υ(nS) (n=2, 3, 4) resonances. We observe the η_c(1S), χ_(c0)(1P) and η_c(2S) resonances produced in two-photon interactions and decaying to K^+K^-π^+π^-π^0, with significances of 18.1, 5.4 and 5.3 standard deviations (including systematic errors), respectively, and report 4.0σ evidence of the χ_(c2)(1P) decay to this final state. We measure the η_c(2S) mass and width in K_S^0K^±π^∓ decays, and obtain the values m(η_c(2S))=3638.5±1.5±0.8  MeV/c^2 and Γ(η_c(2S))=13.4±4.6±3.2  MeV, where the first uncertainty is statistical and the second is systematic. We measure the two-photon width times branching fraction for the reported resonance signals, and search for the χ_(c2)(2P) resonance, but no significant signal is observed

    Evidence for the decay X(3872)→J/ψω

    Get PDF
    We present a study of the decays B^(0,+)→J/ψπ^+π^-π^0K^(0,+), using 467×10^6 BB[overbar] pairs recorded with the BABAR detector. We present evidence for the decay mode X(3872)→J/ψω, with product branching fractions B(B^+→X(3872)K^+)×B(X(3872)→J/ψω)=[0.6±0.2(stat)±0.1(syst)]×10^(-5), and B(B^0→X(3872)K^0)×B(X(3872)→J/ψω)=[0.6±0.3(stat)±0.1(syst)]×10^(-5). A detailed study of the π^+π^-π^0 mass distribution from X(3872) decay favors a negative-parity assignment

    Measurement of CP observables in B^± → D_(CP)K^± decays and constraints on the CKM angle γ

    Get PDF
    Using the entire sample of 467×10^6 Υ(4S)→BB[overbar] decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the SLAC National Accelerator Laboratory, we perform an analysis of B^± → DK^± decays, using decay modes in which the neutral D meson decays to either CP-eigenstates or non-CP-eigenstates. We measure the partial decay rate charge asymmetries for CP-even and CP-odd D final states to be A_(CP+) = 0.25±0.06±0.02 and A_(CP-) = -0.09±0.07±0.02, respectively, where the first error is the statistical and the second is the systematic uncertainty. The parameter A_(CP+) is different from zero with a significance of 3.6 standard deviations, constituting evidence for direct CP violation. We also measure the ratios of the charged-averaged B partial decay rates in CP and non-CP decays, R_(CP+) = 1.18±0.09±0.05 and R_(CP-) = 1.07±0.08±0.04. We infer frequentist confidence intervals for the angle γ of the unitarity triangle, for the strong phase difference δ_B, and for the amplitude ratio r_B, which are related to the B^- → DK^- decay amplitude by r_(B)e^(i(δB-γ)) = A(B^- → D[overbar]^(0)K^-)/A(B^- → D^(0)K^-). Including statistical and systematic uncertainties, we obtain 0.24 < r_B < 0.45 (0.06 < r_B <0.51) and, modulo 180°, 11.3° < γ < 22.7° or 80.8° < γ <99.2° or 157.3° <γ < 168.7° (7.0°<γ<173.0°) at the 68% (95%) confidence level

    Analysis of the D^+ → K^-π^+e^+ν_e decay channel

    Get PDF
    Using 347.5  fb^(-1) of data recorded by the BABAR detector at the PEP-II electron-positron collider, 244×10^3 signal events for the D^+ → K^-π^+e^+ν_e decay channel are analyzed. This decay mode is dominated by the K̅ ^*(892)^0 contribution. We determine the K̅ ^*(892)^0 parameters: m_(K^*(892)^0)=(895.4±0.2±0.2)  MeV/c^2, Γ_(K^*(892)^0)=(46.5±0.3±0.2)  MeV/c^2, and the Blatt-Weisskopf parameter r_(BW) =2.1±0.5±0.5  (GeV/c)^-1, where the first uncertainty comes from statistics and the second from systematic uncertainties. We also measure the parameters defining the corresponding hadronic form factors at q^2 = 0 (r_V = ^(V(0))/_(A1(0)) = 1.463 ± 0.017 ± 0.031, r_2 = _(A1(0)) ^(A2(0))= 0.801±0.020±0.020) and the value of the axial-vector pole mass parametrizing the q^2 variation of A_1 and A_2: m_A=(2.63±0.10±0.13)  GeV/c^2. The S-wave fraction is equal to (5.79±0.16±0.15)%. Other signal components correspond to fractions below 1%. Using the D^+ → K^-π^+π^+ channel as a normalization, we measure the D^+ semileptonic branching fraction: B(D^+ → K^-π^+e^+ν_e)=(4.00±0.03±0.04±0.09)×10^(-2), where the third uncertainty comes from external inputs. We then obtain the value of the hadronic form factor A_1 at q^2=0: A_1(0)=0.6200±0.0056±0.0065±0.0071. Fixing the P-wave parameters, we measure the phase of the S wave for several values of the Kπ mass. These results confirm those obtained with Kπ production at small momentum transfer in fixed target experiments
    • …
    corecore