3,382 research outputs found

    Super B Factories

    Get PDF
    Heavy-flavor physics, in particular B and τ physics results from the B factories, currently provides strong constraints on models of physics beyond the Standard Model. A new generation of colliders, Super B Factories, with 50 to 100 times the luminosity of existing colliders, can, in a dialog with LHC and ILC, provide unique clarification of new physics phenomena seen at those machines

    Global Fits of the CKM Matrix

    Full text link
    We report upon the present status of global fits to Cabibbo-Kobayashi-Maskawa matrix.Comment: 3 pages, 3 figures invited talk presented at EPS conference, Aachen July 17-2

    A Test of CPT Symmetry in K^0 vs \bar{K}^0 to \pi^+\pi^-\pi^0 Decays

    Full text link
    I show that the CP-violating asymmetry in K^0 vs \bar{K}^0 \to \pi^+\pi^-\pi^0 decays differs from that in K_L \to \pi^+\pi^-, K_L \to \pi^0\pi^0 or the semileptonic K_L transitions, if there exists CPT violation in K^0-\bar{K}^0 mixing. A delicate measurement of this difference at a super flavor factory (e.g., the \phi factory) will provide us with a robust test of CPT symmetry in the neutral kaon system.Comment: 4 pages, 1 figure. To appear in the Proceedings of the International PHIPSI09 Workshop, October 2009, Beijing, Chin

    Measurement of the B → D̅ ^((*))D^((*))K branching fractions

    Get PDF
    We present a measurement of the branching fractions of the 22 decay channels of the B^0 and B+ mesons to D̅ ^((*))D^((*))K, where the D^((*)) and D̅ ^((*)) mesons are fully reconstructed. Summing the 10 neutral modes and the 12 charged modes, the branching fractions are found to be B(B^0→D̅6((*))D^((*))K)=(3.68 ± 0.10 ± 0.24)% and B(B^+→D̅ ^((*))D^((*))K)=(4.05 ± 0.11 ± 0.28)%, where the first uncertainties are statistical and the second systematic. The results are based on 429  fb^(-1) of data containing 471 × 10^6BB̅ pairs collected at the Υ(4S) resonance with the BABAR detector at the SLAC National Accelerator Laboratory

    Search for Production of Invisible Final States in Single-Photon Decays of Y(1S)

    Get PDF
    We search for single-photon decays of the Υ(1S) resonance, Υ → γ + invisible, where the invisible state is either a particle of definite mass, such as a light Higgs boson A^0, or a pair of dark matter particles, χχ̅ . Both A^0 and χ are assumed to have zero spin. We tag Υ(1S) decays with a dipion transition Υ(2S)→π^+π^-Υ(1S) and look for events with a single energetic photon and significant missing energy. We find no evidence for such processes in the mass range m_(A^0 ≤ 9.2  GeV and m_χ ≤ 4.5  GeV in the sample of 98×10^6 Υ(2S) decays collected with the BABAR detector and set stringent limits on new physics models that contain light dark matter states

    Study of B → πlν and B → ρlν decays and determination of |V_(ub)|

    Get PDF
    We present an analysis of exclusive charmless semileptonic B-meson decays based on 377 × 10^6 BB̅ pairs recorded with the BABAR detector at the Υ(4S) resonance. We select four event samples corresponding to the decay modes B^0 → π^-ℓ^+ν, B^+ → π^0ℓ^+ν, B^0 → ρ^-ℓ^+ν, and B^+ → ρ^0ℓ^+ν and find the measured branching fractions to be consistent with isospin symmetry. Assuming isospin symmetry, we combine the two B → πℓν samples, and similarly the two B → ρℓν samples, and measure the branching fractions B(B^0→π^-ℓ^+ν)=(1.41 ± 0.05 ± 0.07) × 10^(-4) and B(B^0 → ρ^-ℓ^+ν)=(1.75 ± 0.15 ± 0.27) × 10^(-4), where the errors are statistical and systematic. We compare the measured distribution in q^2, the momentum transfer squared, with predictions for the form factors from QCD calculations and determine the Cabibbo-Kobayashi-Maskawa matrix element |V_(ub)|. Based on the measured partial branching fraction for B → πℓν in the range q^2 < 12  GeV^2 and the most recent QCD light-cone sum-rule calculations, we obtain |V_(ub)|=(3.78 ± 0.13^(+0.55)_(-0.40)) × 10^(-3), where the errors refer to the experimental and theoretical uncertainties. From a simultaneous fit to the data over the full q^2 range and the FNAL/MILC lattice QCD results, we obtain |V_(ub)|=(2.95 ± 0.31) × 10^(-3) from B → πℓν, where the error is the combined experimental and theoretical uncertainty
    corecore