49 research outputs found

    Moments of unconditional logarithmically concave vectors

    Full text link
    We derive two-sided bounds for moments of linear combinations of coordinates od unconditional log-concave vectors. We also investigate how well moments of such combinations may be approximated by moments of Gaussian random variables.Comment: 14 page

    Exponential and moment inequalities for U-statistics

    Full text link
    A Bernstein-type exponential inequality for (generalized) canonical U-statistics of order 2 is obtained and the Rosenthal and Hoffmann-J{\o}rgensen inequalities for sums of independent random variables are extended to (generalized) U-statistics of any order whose kernels are either nonnegative or canonicalComment: 22 page

    Shaping bursting by electrical coupling and noise

    Full text link
    Gap-junctional coupling is an important way of communication between neurons and other excitable cells. Strong electrical coupling synchronizes activity across cell ensembles. Surprisingly, in the presence of noise synchronous oscillations generated by an electrically coupled network may differ qualitatively from the oscillations produced by uncoupled individual cells forming the network. A prominent example of such behavior is the synchronized bursting in islets of Langerhans formed by pancreatic \beta-cells, which in isolation are known to exhibit irregular spiking. At the heart of this intriguing phenomenon lies denoising, a remarkable ability of electrical coupling to diminish the effects of noise acting on individual cells. In this paper, we derive quantitative estimates characterizing denoising in electrically coupled networks of conductance-based models of square wave bursting cells. Our analysis reveals the interplay of the intrinsic properties of the individual cells and network topology and their respective contributions to this important effect. In particular, we show that networks on graphs with large algebraic connectivity or small total effective resistance are better equipped for implementing denoising. As a by-product of the analysis of denoising, we analytically estimate the rate with which trajectories converge to the synchronization subspace and the stability of the latter to random perturbations. These estimates reveal the role of the network topology in synchronization. The analysis is complemented by numerical simulations of electrically coupled conductance-based networks. Taken together, these results explain the mechanisms underlying synchronization and denoising in an important class of biological models

    On a conjecture of J. Zinn

    No full text
    The article contains no abstrac

    Moment inequalities for sums of certain independent symmetric random variables

    No full text
    This paper gives upper and lower bounds for moments of sums of independent random variables (Xk)(X_k) which satisfy the condition P(∣X∣k≥t)=exp(−Nk(t))P(|X|_k ≥ t) = exp(-N_k(t)), where NkN_k are concave functions. As a consequence we obtain precise information about the tail probabilities of linear combinations of independent random variables for which N(t)=∣t∣rN(t) = |t|^r for some fixed 0 < r ≤ 1. This complements work of Gluskin and Kwapień who have done the same for convex functions N
    corecore