65 research outputs found
Tropomyosin Period 3 Is Essential for Enhancement of Isometric Tension in Thin Filament-Reconstituted Bovine Myocardium
Tropomyosin (Tm) consists of 7 quasiequivalent repeats known as “periods,” and its specific function may be associated with these periods. To test the hypothesis that either period 2 or 3 promotes force generation by inducing a positive allosteric effect on actin, we reconstituted the thin filament with mutant Tm in which either period 2 (Δ2Tm) or period 3 (Δ3Tm) was deleted. We then studied: isometric tension, stiffness, 6 kinetic constants, and the pCa-tension relationship. N-terminal acetylation of Tm did not cause any differences. The isometric tension in Δ2Tm remained unchanged, and was reduced to ∼60% in Δ3Tm. Although the kinetic constants underwent small changes, the occupancy of strongly attached cross-bridges was not much different. The Hill factor (cooperativity) did not differ significantly between Δ2Tm (1.79 ± 0.19) and the control (1.73 ± 0.21), or Δ3Tm (1.35 ± 0.22) and the control. In contrast, pCa50 decreased slightly in Δ2Tm (5.11 ± 0.07), and increased significantly in Δ3Tm (5.57 ± 0.09) compared to the control (5.28 ± 0.04). These results demonstrate that, when ions are present at physiological concentrations in the muscle fiber system, period 3 (but not period 2) is essential for the positive allosteric effect that enhances the interaction between actin and myosin, and increases isometric force of each cross-bridge
Recommended from our members
Investigation of the Structural Requirements of the Troponin C Central Helix for Function
A peek into tropomyosin binding and unfolding on the actin filament.
BACKGROUND:Tropomyosin is a prototypical coiled coil along its length with subtle variations in structure that allow interactions with actin and other proteins. Actin binding globally stabilizes tropomyosin. Tropomyosin-actin interaction occurs periodically along the length of tropomyosin. However, it is not well understood how tropomyosin binds actin. PRINCIPAL FINDINGS:Tropomyosin's periodic binding sites make differential contributions to two components of actin binding, cooperativity and affinity, and can be classified as primary or secondary sites. We show through mutagenesis and analysis of recombinant striated muscle alpha-tropomyosins that primary actin binding sites have a destabilizing coiled-coil interface, typically alanine-rich, embedded within a non-interface recognition sequence. Introduction of an Ala cluster in place of the native, more stable interface in period 2 and/or period 3 sites (of seven) increased the affinity or cooperativity of actin binding, analysed by cosedimentation and differential scanning calorimetry. Replacement of period 3 with period 5 sequence, an unstable region of known importance for cooperative actin binding, increased the cooperativity of binding. Introduction of the fluorescent probe, pyrene, near the mutation sites in periods 2 and 3 reported local instability, stabilization by actin binding, and local unfolding before or coincident with dissociation from actin (measured using light scattering), and chain dissociation (analyzed using circular dichroism). CONCLUSIONS:This, and previous work, suggests that regions of tropomyosin involved in binding actin have non-interface residues specific for interaction with actin and an unstable interface that is locally stabilized upon binding. The destabilized interface allows residues on the coiled-coil surface to obtain an optimal conformation for interaction with actin by increasing the number of local substates that the side chains can sample. We suggest that local disorder is a property typical of coiled coil binding sites and proteins that have multiple binding partners, of which tropomyosin is one type
Recommended from our members
Structural and Functional Significance of Aspartic Acid 89 of the Troponin C Central Helix in Ca2+ Signaling
Recommended from our members
Effect of the Structure of the N Terminus of Tropomyosin on Tropomodulin Function
Tropomodulins (Tmod) bind to the N terminus of tropomyosin and cap the pointed end of actin filaments. Tropomyosin alone also inhibits the rate of actin depolymerization at the pointed end of filaments. Here we have defined 1) the structural requirements of the N terminus of tropomyosin important for regulating the pointed end alone and with erythrocyte Tmod (Tmod1), and 2) the Tmod1 subdomains required for binding to tropomyosin and for regulating the pointed end. Changes in pyrene-actin fluorescence during polymerization and depolymerization were measured with actin filaments blocked at the barbed end with gelsolin. Three tropomyosin isoforms differently influence pointed end dynamics. Recombinant TM5a, a short non-muscle α-tropomyosin, inhibited depolymerization. Recombinant (unacetylated) TM2 and N-acetylated striated muscle TM (stTM), long α-tropomyosin isoforms with the same N-terminal sequence, different from TM5a, also inhibited depolymerization but were less effective than TM5a. All blocked the pointed end with Tmod1 in the order of effectiveness TM5a >stTM >TM2, showing the importance of the N-terminal sequence and modification. Tmod1-(1–344), lacking the C-terminal 15 residues, did not nucleate polymerization but blocked the pointed end with all three tropomyosin isoforms as does a shorter fragment, Tmod1-(1–92), lacking the C-terminal “capping” domain though higher concentrations were required. An even shorter fragment, Tmod1-(1–48), bound tropomyosin but did not influence actin filament elongation. Tropomyosin-Tmod may function to locally regulate cytoskeletal dynamics in cells by stabilizing actin filaments
- …