26 research outputs found

    SREBP Coordinates Iron and Ergosterol Homeostasis to Mediate Triazole Drug and Hypoxia Responses in the Human Fungal Pathogen Aspergillus fumigatus

    Get PDF
    Sterol regulatory element binding proteins (SREBPs) are a class of basic helix-loop-helix transcription factors that regulate diverse cellular responses in eukaryotes. Adding to the recognized importance of SREBPs in human health, SREBPs in the human fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus are required for fungal virulence and susceptibility to triazole antifungal drugs. To date, the exact mechanism(s) behind the role of SREBP in these observed phenotypes is not clear. Here, we report that A. fumigatus SREBP, SrbA, mediates regulation of iron acquisition in response to hypoxia and low iron conditions. To further define SrbA's role in iron acquisition in relation to previously studied fungal regulators of iron metabolism, SreA and HapX, a series of mutants were generated in the ΔsrbA background. These data suggest that SrbA is activated independently of SreA and HapX in response to iron limitation, but that HapX mRNA induction is partially dependent on SrbA. Intriguingly, exogenous addition of high iron or genetic deletion of sreA in the ΔsrbA background was able to partially rescue the hypoxia growth, triazole drug susceptibility, and decrease in ergosterol content phenotypes of ΔsrbA. Thus, we conclude that the fungal SREBP, SrbA, is critical for coordinating genes involved in iron acquisition and ergosterol biosynthesis under hypoxia and low iron conditions found at sites of human fungal infections. These results support a role for SREBP–mediated iron regulation in fungal virulence, and they lay a foundation for further exploration of SREBP's role in iron homeostasis in other eukaryotes

    Genes Differentially Expressed in Conidia and Hyphae of Aspergillus fumigatus upon Exposure to Human Neutrophils

    Get PDF
    Aspergillus fumigatus is the most common etiologic agent of invasive aspergillosis in immunocompromised patients. Several studies have addressed the mechanism involved in host defense but only few have investigated the pathogen's response to attack by the host cells. To our knowledge, this is the first study that investigates the genes differentially expressed in conidia vs hyphae of A. fumigatus in response to neutrophils from healthy donors as well as from those with chronic granulomatous disease (CGD) which are defective in the production of reactive oxygen species.Transcriptional profiles of conidia and hyphae exposed to neutrophils, either from normal donors or from CGD patients, were obtained by using the genome-wide microarray. Upon exposure to either normal or CGD neutrophils, 244 genes were up-regulated in conidia but not in hyphae. Several of these genes are involved in the degradation of fatty acids, peroxisome function and the glyoxylate cycle which suggests that conidia exposed to neutrophils reprogram their metabolism to adjust to the host environment. In addition, the mRNA levels of four genes encoding proteins putatively involved in iron/copper assimilation were found to be higher in conidia and hyphae exposed to normal neutrophils compared to those exposed to CGD neutrophils. Deletants in several of the differentially expressed genes showed phenotypes related to the proposed functions, i.e. deletants of genes involved in fatty acid catabolism showed defective growth on fatty acids and the deletants of iron/copper assimilation showed higher sensitivity to the oxidative agent menadione. None of these deletants, however, showed reduced resistance to neutrophil attack.This work reveals the complex response of the fungus to leukocytes, one of the major host factors involved in antifungal defense, and identifies fungal genes that may be involved in establishing or prolonging infections in humans

    Survival of Aspergillus fumigatus in Serum Involves Removal of Iron from Transferrin: the Role of Siderophores

    No full text
    Aspergillus fumigatus is a filamentous fungus which can cause invasive disease in immunocompromised individuals. A. fumigatus can grow in medium containing up to 80% human serum, despite very low concentrations of free iron. The purpose of this study was to determine the mechanism by which A. fumigatus obtains iron from the serum iron-binding protein transferrin. In iron-depleted minimal essential medium (MEM), A. fumigatus growth was supported by the addition of holotransferrin (holoTf) or FeCl(3) but not by the addition of apotransferrin (apoTf). Proteolytic degradation of transferrin by A. fumigatus occurred in MEM-serum; however, transferrin degradation did not occur until late logarithmic phase. Moreover, transferrin was not degraded by A. fumigatus incubated in MEM-holoTf. Urea polyacrylamide gel electrophoresis showed that in MEM-holoTf, holoTf was completely converted to apoTf by A. fumigatus. In human serum, all of the monoferric transferrin was converted to apoTf within 8 h. Siderophores were secreted by A. fumigatus after 8 h of growth in MEM-serum and 12 h in MEM-holoTf. The involvement of small molecules in iron acquisition was confirmed by the fact that transferrin was deferrated by A. fumigatus even when physically separated by a 12-kDa-cutoff membrane. Five siderophores were purified from A. fumigatus culture medium, and the two major siderophores were identified as triacetylfusarinine C and ferricrocin. Both triacetylfusarinine C and ferricrocin removed iron from holoTf with an affinity comparable to that of ferrichrome. These data indicate that A. fumigatus survival in human serum in vitro involves siderophore-mediated removal of iron from transferrin. Proteolytic degradation of transferrin may play a secondary role in iron acquisition
    corecore