155 research outputs found

    So close, yet so far away? the effects of city size, density, and growth on local civic participation

    Get PDF
    Recent studies in the U.S. context have suggested that political participation is a function of the size and concentration of a city’s population. Most of this research focuses on the idea that there is an optimal size and concentration of population that favors active political participation in terms of a higher propensity to vote in local elections, contact local officials, and attend community meetings. The conventional argument suggests a negative relationship between city size and political participation that is mitigated to some extent by the deeper social interactions generated by increased population density. We extend this research by also investigating the influence of population growth on the broader concept of civic participation. Civic participation is a multidimensional concept that requires the use of a broad set of indicators. We expand the number of measures to gauge civic participation at the local level by including data on the formation of volunteer associations, volunteer fire brigades and not-for-profit organizations as well as voter turnout. We test the hypotheses derived from extant research using aggregate data collected from Portuguese cities and discuss the implications of our findings for the literature on local civic participatio

    Kinetic and equilibrium metal-ion-binding behaviour reflected in a metal-ion-dependent antigenic determinant in bovine prothrombin. Comparison with bovine prothrombin fragment 1.

    Get PDF
    Rabbit anti-(bovine prothrombin fragment 1) antibodies were fractionated by using fragment-1 affinity chromatography in the absence of metal ions, and showed an absolute requirement for the presence of metal ions in their interactions with bovine fragment 1 or prothrombin. These antibodies were employed to evaluate both the rate constants for a protein conformation change and the equilibrium metal-ion binding to isolated bovine fragment 1 and intact prothrombin. The close similarity of the rates obtained for the conformation change in fragment 1 and those observed in prothrombin indicated that the same process is involved in both proteins and that the non-fragment-1 region of the prothrombin has essentially no effect on this process in the fragment-1 region. Equilibrium metal-ion-binding studies indicate that the details of the metal-ion-binding process in fragment 1 and prothrombin are essentially the same. We conclude that the metal-ion-binding behaviour of the fragment-1 domain of intact prothrombin is identical with that of isolated fragment 1

    Green primaries: Environmentally friendly energetic complexes

    Get PDF
    Primary explosives are used in small quantities to generate a detonation wave when subjected to a flame, heat, impact, electric spark, or friction. Detonation of the primary explosive initiates the secondary booster or main-charge explosive or propellant. Long-term use of lead azide and lead styphnate as primary explosives has resulted in lead contamination at artillery and firing ranges and become a major health hazard and environmental problem for both military and civilian personnel. Devices using lead primary explosives are manufactured by the tens of millions every year in the United States from primers for bullets to detonators for mining. Although substantial synthetic efforts have long been focused on the search for greener primary explosives, this unresolved problem has become a “holy grail” of energetic materials research. Existing candidates suffer from instability or excessive sensitivity, or they possess toxic metals or perchlorate. We report here four previously undescribed green primary explosives based on complex metal dianions and environmentally benign cations, (cat)(2)[M(II)(NT)(4)(H(2)O)(2)] (where cat is NH(4)(+) or Na(+), M is Fe(2+) or Cu(2+), and NT(−) is 5-nitrotetrazolato-N(2)). They are safer to prepare, handle, and transport than lead compounds, have comparable initiation efficiencies to lead azide, and offer rapid reliable detonation comparable with lead styphnate. Remarkably, they possess all current requirements for green primary explosives and are suitable to replace lead primary explosives in detonators. More importantly, they can be synthesized more safely, do not pose health risks to personnel, and cause much less pollution to the environment

    Solution conformations of the gamma-carboxyglutamic acid domain of bovine prothrombin fragment 1, residues 1-65.

    Get PDF
    Molecular dynamics simulations have been performed (AMBER version 3.1) on solvated residues 1-65 of bovine prothrombin fragment 1 (BF1) by using the 2.8-A resolution crystallographic coordinates as the starting conformation for understanding calcium ion-induced conformational changes that precede experimentally observable phospholipid binding. Simulations were performed on the non-metal-bound crystal structure, the form resulting from addition of eight calcium ions to the 1-65 region of the crystal structure, the form resulting from removal of calcium ions after 107 ps and continuing the simulation, and an isolated hexapeptide loop (residues 18-23). In all cases, the 100-ps time scale seemed adequate to sample an ensemble of solution conformers within a particular region of conformation space. The non-metal-containing BF1 did not unfold appreciably during a 106-ps simulation starting from the crystallographic geometry. The calcium ion-containing structure (Ca-BF1) underwent an interesting conformational reorganization during its evolution from the crystal structure: during the time course of a 107-ps simulation, Ca-BF1 experienced a trans----cis isomerization of the gamma-carboxyglutamic acid-21 (Gla-21)-Pro-22 peptide bond. Removal of the calcium ions from this structure followed by 114 ps of additional molecular dynamics showed significant unfolding relative to the final 20-ps average structure of the 107-ps simulation; however, the Gla-21-Pro-22 peptide bond remained cis. A 265-ps simulation on the termini-protected hexapeptide loop (Cys-18 to Cys-23) containing two calcium ions also did not undergo a trans----cis isomerization. It is believed that the necessary activation energy for the transitional event observed in the Ca-BF1 simulation was largely supplied by global conformational events with a possible assist from relief of intermolecular crystal packing forces. The presence of a Gla preceding Pro-22, the inclusion of Pro-22 in a highly strained loop structure, and the formation of two long-lived salt bridges prior to isomerization may all contribute to this finding
    corecore