31 research outputs found

    GADD45β Determines Chemoresistance and Invasive Growth of Side Population Cells of Human Embryonic Carcinoma

    Get PDF
    Side population (SP) cells are an enriched population of stem, and the existence of SP cells has been reported in human cancer cell lines. In this study, we performed an SP analysis using 11 human cancer cell lines and confirmed the presence of SP cells in an embryonic carcinoma cell line, NEC8. NEC8 SP cells showed characteristics of cancer stem cells, such as high growth rate, chemoresistance and high invasiveness. To further characterize the NEC8 SP cells, we used DNA microarrays. Among 38,500 genes, we identified 12 genes that were over-expressed in SP cells and 1 gene that was over-expressed in non-SP cells. Among these 13 genes, we focused on GADD45b. GADD45b was over-expressed in non-SP cells, but the inhibition of GADD45b had no effect on non-SP cells. Paradoxically, the inhibition of GADD45b significantly reduced the viability of NEC8 SP cells. The inhibition of ABCG2, which determines the SP phenotype, had no effect on the invasiveness of NEC8 SP cells, but the inhibition of GADD45b significantly reduced invasiveness. These results suggest that GADD45b, but not ABCG2, might determine the cancer stem cell-like phenotype, such as chemoresistance and the high invasiveness of NEC8 SP cells, and might be a good therapeutic target

    Pivotal Role of IL-22 Binding Protein in the Epithelial Autoregulation of Interleukin-22 Signaling in the Control of Skin Inflammation

    Get PDF
    Disruption of skin homeostasis can lead to inflammatory cutaneous diseases resulting from the dysregulated interplay between epithelial keratinocytes and immune cells. Interleukin (IL)-22 signaling through membrane-bound IL-22 receptor 1 (IL-22R1) is crucial to maintain cutaneous epithelial integrity, and its malfunction mediates deleterious skin inflammation. While IL-22 binding protein (IL-22BP) binds IL-22 to suppress IL-22 signaling, how IL-22BP controls epithelial functionality to prevent skin inflammation remains unclear. Here, we describe the pivotal role of IL-22BP in mediating epithelial autoregulation of IL-22 signaling for the control of cutaneous pathogenesis. Unlike prominent expression of IL-22BP in dendritic cells in lymphoid tissues, epidermal keratinocytes predominantly expressed IL-22BP in the skin in the steady state, whereas its expression decreased during the development of psoriatic inflammation. Deficiency in IL-22BP aggravates psoriasiform dermatitis, accompanied by abnormal hyperproliferation of keratinocytes and excessive cutaneous inflammation as well as enhanced dermal infiltration of granulocytes and γδT cells. Furthermore, IL-22BP abrogates the functional alternations of keratinocytes upon stimulation with IL-22. On the other hand, treatment with IL-22BP alleviates the severity of cutaneous pathology and inflammation in psoriatic mice. Thus, the fine-tuning of IL-22 signaling through autocrine IL-22BP production in keratinocytes is instrumental in the maintenance of skin homeostasis

    Do we really need “stem” cell for renal regeneration?

    No full text

    Epigenetic Regulation of BMP7 in the Regenerative Response to Ischemia

    No full text
    Kidneys damaged by ischemia have the potential to regenerate through a mechanism involving intrarenal induction of protective factors, including bone morphogenetic protein-7 (BMP7). Epigenetic changes, such as alterations in histone modifications, have also been shown to play a role in various pathologic conditions, but their involvement in ischemic injury and regeneration remains unknown. This study investigated whether changes in histone acetylation, regulated by histone acetyltransferase and histone deacetylase (HDAC), are induced by renal ischemia and involved in the regenerative response. Ischemia/reperfusion of the mouse kidney induced a transient decrease in histone acetylation in proximal tubular cells, likely as a result of a decrease in histone acetyltransferase activity as suggested by experiments with energy-depleted renal epithelial cells in culture. During recovery after transient energy depletion in epithelial cells, the HDAC isozyme HDAC5 was selectively downregulated in parallel with the return of acetylated histone. Knockdown of HDAC5 by RNAi significantly increased histone acetylation and BMP7 expression. BMP7 induction and HDAC5 downregulation in the recovery phase were also observed in proximal tubular cells in vivo after transient ischemia. These data indicate that ischemia induces dynamic epigenetic changes involving HDAC5 downregulation, which contributes to histone re-acetylation and BMP7 induction in the recovery phase. This highlights HDAC5 as a modulator of the regenerative response after ischemia and suggests HDAC5 inhibition may be a therapeutic strategy to enhance BMP7 expression
    corecore