9 research outputs found
A versatile cancer cell trapping and 1D migration assay in a microfluidic device
Highly migratory cancer cells often lead to metastasis and recurrence and are responsible for the high mortality rates in many cancers despite aggressive treatment. Recently, the migratory behavior of patient-derived glioblastoma multiforme cells on microtracks has shown potential in predicting the likelihood of recurrence, while at the same time, antimetastasis drugs have been developed which require simple yet relevant high-throughput screening systems. However, robust in vitro platforms which can reliably seed single cells and measure their migration while mimicking the physiological tumor microenvironment have not been demonstrated. In this study, we demonstrate a microfluidic device which hydrodynamically seeds single cancer cells onto stamped or femtosecond laser ablated polystyrene microtracks, promoting 1D migratory behavior due to the cells' tendency to follow topographical cues. Using time-lapse microscopy, we found that single U87 glioblastoma multiforme cells migrated more slowly on laser ablated microtracks compared to stamped microtracks of equal width and spacing (p < 0.05) and exhibited greater directional persistence on both 1D patterns compared to flat polystyrene (p < 0.05). Single-cell morphologies also differed significantly between flat and 1D patterns, with cells on 1D substrates exhibiting higher aspect ratios and less circularity (p < 0.05). This microfluidic platform could lead to automated quantification of single-cell migratory behavior due to the high predictability of hydrodynamic seeding and guided 1D migration, an important step to realizing the potential of microfluidic migration assays for drug screening and individualized medicine. Published under license by AIP Publishing
Engineering a Tunable Micropattern-Array Assay To Sort Single Extracellular Vesicles and Particles To Detect RNA and Protein In Situ
The molecular heterogeneity of extracellular vesicles (EVs) and the co-isolation of physically similar particles, such as lipoproteins (LPs), confounds and limits the sensitivity of EV bulk biomarker characterization. Herein, we present a single-EV and particle (siEVP) protein and RNA assay (siEVPPRA) to simultaneously detect mRNAs, miRNAs, and proteins in subpopulations of EVs and LPs. The siEVPPRA immobilizes and sorts particles via positive immunoselection onto micropatterns and focuses biomolecular signals in situ. By detecting EVPs at a single-particle resolution, the siEVPPRA outperformed the sensitivities of bulk-analysis benchmark assays for RNA and protein. To assess the specificity of RNA detection in complex biofluids, EVs from various glioma cell lines were processed with small RNA sequencing, whereby two mRNAs and two miRNAs associated with glioblastoma multiforme (GBM) were chosen for cross-validation. Despite the presence of single-EV-LP co-isolates in serum, the siEVPPRA detected GBM-associated vesicular RNA profiles in GBM patient siEVPs. The siEVPPRA effectively examines intravesicular, intervesicular, and interparticle heterogeneity with diagnostic promise
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Microfluidic affinity separation chip for selective capture and release of label-free ovarian cancer exosomes
Exosomes are nanoscale vesicles found in many bodily fluids which play a significant role in cell-to-cell signaling and contain biomolecules indicative of their cells of origin. Recently, microfluidic devices have provided the ability to efficiently capture exosomes based on specific membrane biomarkers, but releasing the captured exosomes intact and label-free for downstream characterization and experimentation remains a challenge. We present a herringbone-grooved microfluidic device which is covalently functionalized with antibodies against general and cancer exosome membrane biomarkers (CD9 and EpCAM) to isolate exosomes from small volumes of high-grade serous ovarian cancer (HGSOC) serum. Following capture, intact exosomes are released label-free using a low pH buffer and immediately neutralized downstream to ensure their stability. Characterization of captured and released exosomes was performed using fluorescence microscopy, nanoparticle tracking analysis, flow-cytometry, and SEM. Our results demonstrate the successful isolation of intact and label-free exosomes, indicate that the amount of both total and EpCAM+ exosomes increases with HGSOC disease progression, and demonstrate the downstream internalization of isolated exosomes by OVCAR8 cells. This device and approach can be utilized for a nearly limitless range of downstream exosome analytical and experimental techniques, both on and off-chip
Investigating the consistency of extracellular vesicle production from breast cancer subtypes using CELLine adherent bioreactors
Abstract Extracellular vesicle (EV) research has grown rapidly in recent years, largely due to the potential use of EVs as liquid biopsy biomarkers or therapeutics. However, in‐depth characterisation and validation of EVs produced using conventional in vitro cultures can be challenging due to the large area of cell monolayers and volumes of culture media required. To overcome this obstacle, multiple bioreactor designs have been tested for EV production with varying success, but the consistency of EVs produced over time in these systems has not been reported previously. In this study, we demonstrate that several breast cancer cell lines of different subtypes can be cultured simultaneously in space, resource, and time efficient manner using CELLine AD 1000 systems, allowing the consistent production of vast amounts of EVs for downstream experimentation. We report an improved workflow used for inoculating, maintaining, and monitoring the bioreactors, their EV production, and the characterisation of the EVs produced. Lastly, our proteomic analyses of the EVs produced throughout the lifetime of the bioreactors show that core EV‐associated proteins are relatively consistent, with few minor variations over time, but that tracking the production of EVs is a convenient method to indirectly monitor the bioreactor and consistency of the yielded EVs. These findings will aid future studies requiring the simultaneous production of large amounts of EVs from several cell lines of different subtypes of a disease and other EV biomanufacturing applications
A versatile cancer cell trapping and 1D migration assay in a microfluidic device
Highly migratory cancer cells often lead to metastasis and recurrence and are responsible for the high mortality rates in many cancers despite aggressive treatment. Recently, the migratory behavior of patient-derived glioblastoma multiforme cells on microtracks has shown potential in predicting the likelihood of recurrence, while at the same time, antimetastasis drugs have been developed which require simple yet relevant high-throughput screening systems. However, robust in vitro platforms which can reliably seed single cells and measure their migration while mimicking the physiological tumor microenvironment have not been demonstrated. In this study, we demonstrate a microfluidic device which hydrodynamically seeds single cancer cells onto stamped or femtosecond laser ablated polystyrene microtracks, promoting 1D migratory behavior due to the cells' tendency to follow topographical cues. Using time-lapse microscopy, we found that single U87 glioblastoma multiforme cells migrated more slowly on laser ablated microtracks compared to stamped microtracks of equal width and spacing (p < 0.05) and exhibited greater directional persistence on both 1D patterns compared to flat polystyrene (p < 0.05). Single-cell morphologies also differed significantly between flat and 1D patterns, with cells on 1D substrates exhibiting higher aspect ratios and less circularity (p < 0.05). This microfluidic platform could lead to automated quantification of single-cell migratory behavior due to the high predictability of hydrodynamic seeding and guided 1D migration, an important step to realizing the potential of microfluidic migration assays for drug screening and individualized medicine. Published under license by AIP Publishing
Engineering a tunable micropattern‐array assay to sort single extracellular vesicles and particles to detect RNA and protein in situ
Abstract The molecular heterogeneity of extracellular vesicles (EVs) and the co‐isolation of physically similar particles, such as lipoproteins (LPs), confounds and limits the sensitivity of EV bulk biomarker characterization. Herein, we present a single‐EV and particle (siEVP) protein and RNA assay (siEVPPRA) to simultaneously detect mRNAs, miRNAs, and proteins in subpopulations of EVs and LPs. The siEVPPRA immobilizes and sorts particles via positive immunoselection onto micropatterns and focuses biomolecular signals in situ. By detecting EVPs at a single‐particle resolution, the siEVPPRA outperformed the sensitivities of bulk‐analysis benchmark assays for RNA and protein. To assess the specificity of RNA detection in complex biofluids, EVs from various glioma cell lines were processed with small RNA sequencing, whereby two mRNAs and two miRNAs associated with glioblastoma multiforme (GBM) were chosen for cross‐validation. Despite the presence of single‐EV‐LP co‐isolates in serum, the siEVPPRA detected GBM‐associated vesicular RNA profiles in GBM patient siEVPs. The siEVPPRA effectively examines intravesicular, intervesicular, and interparticle heterogeneity with diagnostic promise