7 research outputs found

    Endovascular Electroencephalogram Records Simultaneous Subdural Electrode-Detectable, Scalp Electrode-Undetectable Interictal Epileptiform Discharges

    No full text
    Introduction: We hypothesized that an endovascular electroencephalogram (eEEG) can detect subdural electrode (SDE)-detectable, scalp EEG-undetectable epileptiform discharges. The purpose of this study is, therefore, to measure SDE-detectable, scalp EEG-undetectable epileptiform discharges by an eEEG on a pig. Methods: A pig under general anesthesia was utilized to measure an artificially generated epileptic field by an eEEG that was able to be detected by an SDE, but not a scalp EEG as a primary outcome. We also compared the phase lag of each epileptiform discharge that was detected by the eEEG and SDE as a secondary outcome. Results: The eEEG electrode detected 113 (97%) epileptiform discharges (97% sensitivity). Epileptiform discharges that were localized within the three contacts (contacts two, three and four), but not spread to other parts, were detected by the eEEG with a 92% sensitivity. The latency between peaks of the eEEG and right SDE earliest epileptiform discharge ranged from 0 to 48 ms (mean, 13.3 ms; median, 11 ms; standard deviation, 9.0 ms). Conclusion: In a pig, an eEEG could detect epileptiform discharges that an SDE could detect, but that a scalp EEG could not

    Endovascular electroencephalography (eEEG) can detect the laterality of epileptogenic foci as accurately as subdural electrodes

    No full text
    Background: Traditional brain activity monitoring via scalp electroencephalography (EEG) offers limited resolution and is susceptible to artifacts. Endovascular electroencephalography (eEEG) emerged in the 1990s. Despite early successes and potential for detecting epileptiform activity, eEEG has remained clinically unutilized. This study aimed to further test the capabilities of eEEG in detecting lateralized epileptic discharges in animal models. We hypothesized that eEEG would be able to detect lateralization. The purpose of this study was to measure epileptiform discharges with eEEG in animal models with lateralization in epileptogenicity. Materials and methods: We inserted eEEG electrodes into the transverse sinuses of three pigs, and subdural electrodes (SDs) on the surfaces of the left and right hemispheres. We induced epileptogenicity with penicillin in the left brain of pigs F00001 and F00003, and in the right brain of pig F00002. The resulting epileptiform discharges were measured by eEEG electrodes placed in the left and right transverse sinuses, and conducted comparisons with epileptiform discharges from SDs. We also had 12 neurological physicians interpret measurement results from eEEG alone and determine the side (left or right) of epileptogenicity. Results: Three pigs were evaluated for epileptiform discharge detection using eEEG: F00001 (7 months old, 14.0 kg), F00002 (8 months old, 15.6 kg), and F00003 (8 months old, 14.4 kg). The eEEG readings were compared with results from SDs, showing significant alignment across all subjects (p 0.93) and PPV (>0.95) that appear equivalent to those of subdural EEG in the three pigs. This lateralization was also discernible by neurological physicians on visual inspection
    corecore