10 research outputs found

    Equivalent static wind loads on snow-accreted overhead wires

    Get PDF
    The effects of structural and aerodynamic non-linearity on dynamic wind loads on overhead wires have been investigated. According to the Japanese design standards for transmission structures, wind loads on overhead wires are determined using equivalent static wind loads that can be used to estimate the maximum responses under dynamic loads. Some assumptions of linear theory are necessary to derive the equivalent static wind loads, and they have been validated only in the case of strong winds. To derive equivalent static wind loads in the case of weaker winds for snow-accreted conditions, time history response analyses of overhead wires have been performed. Because the turbulence intensity becomes higher in weaker winds, aerodynamic non-linearity causes the wind loads on the wires to become larger. Furthermore, structural non-linearity causes the tension in the wires to become greater. The contribution of wire resonance to dynamic load increases when the wind speed is low, and the gust response factor becomes greater than the value derived considering only the quasi-static response caused by wind turbulence. Taking into consideration the two major effects of aerodynamic and structural non-linearity, a modified method is proposed to enable the use of a design method based on equivalent static wind loads

    New consideration on flutter properties based on step-by-step analysis

    Get PDF
    This paper studies the coupled flutter mechanism of plate and long span bridges based on step-by-step analysis (SBS). Fundamental flutter modes are defined based on amplitude ratio and phase difference between heaving and torsional motions. Furthermore, a formula remarkably similar to the Selberg formula can be derived by use of the particular simplified flutter-onset condition. In the process of SBS analysis, some torsional divergent velocities where the torsional rigidity becomes zero can be defined. Finally, the flutter-behavior of an elastic model of the complete Akashi-Kaikyo Bridge, which is the longest suspension bridge in the world, is studied from the point of view of flutter in 2 degrees of freedom, namely heaving and torsional motion, taking into account the structural coupling effect of additional torsional displacement induced by horizontal displacement as a structural coupling property

    Unsteady aerodynamic force modelling for 3-DoF-galloping of four-bundled conductors

    No full text
    Galloping of overhead transmission lines is characterised by large-amplitude, low-frequency, vertical–horizontal–torsional three degree-of-freedom (DoF) oscillations, which can potentially induce interphase short circuits and fatigue in the conductors and support structures. Numerical analyses are useful for estimating the galloping response of transmission lines, and unsteady aerodynamic forces should be evaluated for accurate simulation. In this study, the unsteady aerodynamic force modelling of four-bundled conductors is investigated based on aerodynamic force measurement test results. Three types of unsteady aerodynamic force measurement tests were performed: under constant torsional angular velocity and under torsional and vertical 1-DoF sinusoidal oscillations. Evaluating the dependence of the aerodynamic forces on the various motions enabled an improved unsteady aerodynamic force model to be developed, considering the effect of angular velocity. First, two-variable aerodynamic coefficients were proposed as a function of the angle of attack and non-dimensional angular velocity. These coefficients were determined via tests performed at constant torsional angular velocities; results with different combinations of wind speed and angular velocity confirmed that the non-dimensional angular velocity can be used to define the unsteady aerodynamic forces. Then, the validity of the two-variable aerodynamic force formulation was confirmed for predicting torsional or vertical 1-DoF oscillations, by comparing the unsteady aerodynamic force obtained via the sinusoidal forced-vibration tests and via the constant angular-velocity tests. Finally, results of the time-history​ analyses using the two-variable aerodynamic coefficients were compared with those of previous wind-response measurement tests to obtain the best unsteady aerodynamic force model for simulating large-amplitude 3-DoF galloping. These results indicate that the unsteady aerodynamic forces for 3-DoF-galloping of four-bundled conductors can be evaluated using the relative angle of attack, the rate of change of the relative angle of attack, and the relative wind speed, using two-variable aerodynamic coefficients measured under constant angular velocity conditions

    Effects of aerodynamic coupling and non-linear behaviour on galloping of ice-accreted conductors

    No full text
    Wind action on ice-covered transmission lines causes galloping, which is a problem because it can introduce interphase short circuits and cause fatigue of the cross-arms of the power line’s towers and insulators. The galloping phenomenon is characterised by a combination of large-amplitude, low-frequency vertical, horizontal, and torsional oscillations. To better understand the dynamic responses of vertical, horizontal and torsional 3-degree-of-freedom (DoF) galloping on four-bundled conductors, time–history analyses were conducted for 2D systems of varying DoFs and frequency ratios. The fundamental characteristics of the conductor’s non-linear 1-DoF vertical response were analysed via time–history analysis, indicating that large oscillations were caused by inclusion of an angular range of relative angle of attack with a high negative lift-coefficient slope. By considering the energy balance of the vertical motion over one oscillation period, we estimated the stable and unstable limit-cycle amplitudes. Then, by comparing the results of the 1-, 2-, and 3-DoF systems, we clarified the effect of aerodynamic coupling on 3-DoF galloping. The oscillation types in the 3-DoF systems were categorised as vertical–horizontal 2-DoF coupling oscillations, vertical–torsional 2-DoF coupling oscillations, and vertical 1-DoF oscillations according to the stationary torsional angle. Finally, we indicated the coupling effects on vertical oscillation by considering the energy balance of the vertical motion with the defined amplitudes and phase differences of the horizontal and torsional motions. The vertical amplitude of the vertical–horizontal 2-DoF coupling oscillation can become very large if the horizontal amplitude increases and the phase difference between horizontal and vertical displacements approaches 180°. Meanwhile, the range of the stationary torsional angle in which the vertical–torsional 2-DoF coupling oscillation occurs becomes wide as the phase difference between the torsional and vertical displacements approaches 90°. However, without horizontal motion, the vertical amplitude has a limited value, even if the torsional amplitude becomes large

    Effects of aerodynamic coupling and non-linear behaviour on galloping of ice-accreted conductors

    No full text
    Wind action on ice-covered transmission lines causes galloping, which is a problem because it can introduce interphase short circuits and cause fatigue of the cross-arms of the power line’s towers and insulators. The galloping phenomenon is characterised by a combination of large-amplitude, low-frequency vertical, horizontal, and torsional oscillations. To better understand the dynamic responses of vertical, horizontal and torsional 3-degree-of-freedom (DoF) galloping on four-bundled conductors, time–history analyses were conducted for 2D systems of varying DoFs and frequency ratios. The fundamental characteristics of the conductor’s non-linear 1-DoF vertical response were analysed via time–history analysis, indicating that large oscillations were caused by inclusion of an angular range of relative angle of attack with a high negative lift-coefficient slope. By considering the energy balance of the vertical motion over one oscillation period, we estimated the stable and unstable limit-cycle amplitudes. Then, by comparing the results of the 1-, 2-, and 3-DoF systems, we clarified the effect of aerodynamic coupling on 3-DoF galloping. The oscillation types in the 3-DoF systems were categorised as vertical–horizontal 2-DoF coupling oscillations, vertical–torsional 2-DoF coupling oscillations, and vertical 1-DoF oscillations according to the stationary torsional angle. Finally, we indicated the coupling effects on vertical oscillation by considering the energy balance of the vertical motion with the defined amplitudes and phase differences of the horizontal and torsional motions. The vertical amplitude of the vertical–horizontal 2-DoF coupling oscillation can become very large if the horizontal amplitude increases and the phase difference between horizontal and vertical displacements approaches 180°. Meanwhile, the range of the stationary torsional angle in which the vertical–torsional 2-DoF coupling oscillation occurs becomes wide as the phase difference between the torsional and vertical displacements approaches 90°. However, without horizontal motion, the vertical amplitude has a limited value, even if the torsional amplitude becomes large

    Field observations of wet snow accretion on overhead transmission lines at the Kushiro test line

    No full text
    Wet snow accretion on overhead lines often causes large-scale snow damage. The Kushiro test line, Japan, was constructed in 2013 for field observations of wet snow accretion in conductors and insulators as well as galloping resulting from snow accretion in overhead lines. Several cases of noticeable wet snow accretion have been observed at this site, especially in the winter of 2014. In the most notorious case, more than 2 kg/m of snow was found to be accreted on the ACSR240 single conductor, which has a diameter of 22.4 mm. In the case of single conductors without countermeasures, snow accretion developed to form a cylindrical sleeve with wire rotation. However, in some cases, the cylindrical sleeve of snow accretion also occurred in four-bundled conductors, where line spacers prevent the wire from rotating. This indicates that the accreted wet snow slides along the strands of the wire to form a cylindrical sleeve. Accordingly, the effectiveness of the snow resistance ring, which is the most commonly used anti-snow-damage device in Japan, in preventing snow accretion was confirmed. As the ring prevents the accreted snow from sliding, accretion areas tend to split, causing the snow to be shed from the conductor. More heat transfer from the air to snow and heat generated by the electric current facilitated the sliding of snow along the strand, making the snow resistance ring more effective
    corecore