42 research outputs found

    The absence of SOX2 in the anterior foregut alters the esophagus into trachea and bronchi in both epithelial and mesenchymal components

    Get PDF
    In the anterior foregut (AFG) of mouse embryos, the transcription factor SOX2 is expressed in the epithelia of the esophagus and proximal branches of respiratory organs comprising the trachea and bronchi, whereas NKX2.1 is expressed only in the epithelia of respiratory organs. Previous studies using hypomorphic Sox2 alleles have indicated that reduced SOX2 expression causes the esophageal epithelium to display some respiratory organ characteristics. In the present study, we produced mouse embryos with AFG-specific SOX2 deficiency. In the absence of SOX2 expression, a single NKX2.1-expressing epithelial tube connected the pharynx and the stomach, and a pair of bronchi developed in the middle of the tube. Expression patterns of NKX2.1 and SOX9 revealed that the anterior and posterior halves of SOX2-deficient AFG epithelial tubes assumed the characteristics of the trachea and bronchus, respectively. In addition, we found that mesenchymal tissues surrounding the SOX2-deficient NKX2.1-expressing epithelial tube changed to those surrounding the trachea and bronchi in the anterior and posterior halves, as indicated by the arrangement of smooth muscle cells and SOX9-expressing cells and by the expression of Wnt4 (esophagus specific), Tbx4 (respiratory organ specific), and Hoxb6 (distal bronchus specific). The impact of mesenchyme-derived signaling on the early stage of AFG epithelial specification has been indicated. Our study demonstrated an opposite trend where epithelial tissue specification causes concordant changes in mesenchymal tissues, indicating a reciprocity of epithelial-mesenchymal interactions

    PDZRN3 Negatively Regulates BMP-2–induced Osteoblast Differentiation through Inhibition of Wnt Signaling

    Get PDF
    PDZRN3, a member of the PDZ domain–containing RING finger family of proteins plays an important role in negative feedback control of BMP-2–induced osteoblast differentiation in C2C12 mouse mesenchymal progenitor cells through inhibition of Wnt–β-catenin signaling

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Parkinsonism in spinocerebellar ataxia with axonal neuropathy caused by adult-onset COA7 variants: a case report

    No full text
    Abstract Background Individuals with variants of cytochrome c oxidase assembly factor 7 (COA7), a mitochondrial functional-related gene, exhibit symptoms of spinocerebellar ataxia with axonal neuropathy before the age of 20. However, COA7 variants with parkinsonism or adult-onset type cases have not been described. Case presentation We report the case of a patient who developed cerebellar symptoms and slowly progressive sensory and motor neuropathy in the extremities, similar to Charcot-Marie-Tooth disease, at age 30, followed by parkinsonism at age 58. Exome analysis revealed COA7 missense mutation in homozygotes (NM_023077.2:c.17A > G, NP_075565.2: p.Asp6Gly). Dopamine transporter single-photon emission computed tomography using a 123I-Ioflupane revealed clear hypo-accumulation in the bilateral striatum. However, 123I-metaiodobenzylguanidine myocardial scintigraphy showed normal sympathetic nerve function. Levodopa administration improved parkinsonism in this patient. Conclusions COA7 gene variants may have caused parkinsonism in this case because mitochondrial function-related genes, such as parkin and PINK1, are known causative genes in some familial Parkinson’s diseases

    Communicating hydrocephalus and coexisting nonenhancing tumor: An ominous sign for patients with neurofibromatosis type 1?

    No full text
    A 26-year-old woman with familial neurofibromatosis type 1 sustained headache that worsened for 1 month. Neuroimaging revealed a mild ventriculomegaly and nonenhancing lesion in the pons. In spite of repeated cerebrospinal fluid examinations and magnetic resonance imaging, the etiology was not determined. The affected pons markedly enlarged in the following 2 months, with extensive leptomeningeal dissemination. Biopsy through hemilaminectomy of the T9 was diagnosed as glioblastoma multiforme. Prompt histologic examination should be performed when patients with familial neurofibromatosis type 1 manifest communicating hydrocephalus coexistent with a nonenhancing tumor. Keywords: Communicating hydrocephalus, Nonenhancing pontine tumor, Leptomeningeal GBM, Neurofibromatosis type
    corecore