64 research outputs found

    Pattern Recognition via the Toll-Like Receptor System in the Human Female Genital Tract

    Get PDF
    The mucosal surface of the female genital tract is a complex biosystem, which provides a barrier against the outside world and participates in both innate and acquired immune defense systems. This mucosal compartment has adapted to a dynamic, non-sterile environment challenged by a variety of antigenic/inflammatory stimuli associated with sexual intercourse and endogenous vaginal microbiota. Rapid innate immune defenses against microbial infection usually involve the recognition of invading pathogens by specific pattern-recognition receptors recently attributed to the family of Toll-like receptors (TLRs). TLRs recognize conserved pathogen-associated molecular patterns (PAMPs) synthesized by microorganisms including bacteria, fungi, parasites, and viruses as well as endogenous ligands associated with cell damage. Members of the TLR family, which includes 10 human TLRs identified to date, recognize distinct PAMPs produced by various bacterial, fungal, and viral pathogens. The available literature regarding the innate immune system of the female genital tract during human reproductive processes was reviewed in order to identify studies specifically related to the expression and function of TLRs under normal as well as pathological conditions. Increased understanding of these molecules may provide insight into site-specific immunoregulatory mechanisms in the female reproductive tract

    Histone Deacetylase Inhibitor Therapy in Epithelial Ovarian Cancer

    Get PDF
    Since epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in ovarian cancers, novel compounds endowed with a histone deacetylase (HDAC) inhibitory activity are an attractive therapeutic approach. In this review, we discuss the biologic and therapeutic effects of HDAC inhibitors (HDACIs) in treating ovarian cancer. HDACIs were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and expression of genes related to the malignant phenotype in a variety of ovarian cancer cell lines. Furthermore, HDACIs were able to induce the accumulation of acetylated histones in the chromatin of the p21WAF1 gene in human ovarian carcinoma cells. In xenograft models, some of HDACIs have demonstrated antitumor activity with only few side effects. Some clinical trials demonstrate that HDACI drugs provide an important class of new mechanism-based therapeutics for ovarian cancer. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating ovarian cancer, especially focusing on preclinical studies and clinical trials

    Advanced small cell carcinoma of the uterine cervix treated by neoadjuvant chemotherapy with irinotecan and cisplatin followed by radical surgery

    Get PDF
    Small cell carcinoma of the uterine cervix is a rare form of cervical cancer characterized by extreme aggressiveness and poor prognosis because of its rapid growth, frequent distant metastases, and resistance to conventional treatment modalities. We report here a case of advanced-stage small cell carcinoma of the uterine cervix treated by neoadjuvant chemotherapy, followed by radical surgery, resulting in locoregional disease control. A 39-year-old Japanese woman was diagnosed as having stage IIIb small cell carcinoma of the uterine cervix. She was treated by neoadjuvant chemotherapy with irinotecan/cisplatin, followed by extended radical hysterectomy with pelvic and paraaortic lymphadenectomy. The patient was further treated by adjuvant chemotherapy with irinotecan/cisplatin. Intrapelvic recurrence has not been detected throughout the postoperative course. However, the patient died with distant metastases of the disease, 27 months following the initial treatment. It has been suggested that neoadjuvant chemotherapy therapy followed by radical surgery is a treatment option for advanced-stage small cell carcinoma of the uterine cervix for the locoregional disease control. Further studies are necessary to obtain information regarding multimodal treatment including sequence, duration, frequency, and type of effective chemotherapy agents to be used in the treatment of small cell carcinoma of the uterine cervix

    Preclinical Studies of Chemotherapy Using Histone Deacetylase Inhibitors in Endometrial Cancer

    No full text
    Because epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in endometrial cancers, novel compounds endowed with a histone deacetylase (HDAC) inhibitory activity are an attractive therapeutic approach. In this review, we discuss the biologic and therapeutic effects of HDAC inhibitors (HDACIs) in treating endometrial cancer. HDACIs were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and the expression of genes related to the malignant phenotype in a variety of endometrial cancer cell lines. Furthermore, HDACIs were able to induce the accumulation of acetylated histones in the chromatin of the p21WAF1 gene in human endometrial carcinoma cells. In xenograft models, some HDACIs have demonstrated antitumor activity with only few side effects. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating endometrial cancer, with a special focus on preclinical studies
    corecore