54 research outputs found

    A New Milky Way Satellite Discovered In The Subaru/Hyper Suprime-Cam Survey

    Full text link
    We report the discovery of a new ultra-faint dwarf satellite companion of the Milky Way based on the early survey data from the Hyper Suprime-Cam Subaru Strategic Program. This new satellite, Virgo I, which is located in the constellation of Virgo, has been identified as a statistically significant (5.5 sigma) spatial overdensity of star-like objects with a well-defined main sequence and red giant branch in their color-magnitude diagram. The significance of this overdensity increases to 10.8 sigma when the relevant isochrone filter is adopted for the search. Based on the distribution of the stars around the likely main sequence turn-off at r ~ 24 mag, the distance to Virgo I is estimated as 87 kpc, and its most likely absolute magnitude calculated from a Monte Carlo analysis is M_V = -0.8 +/- 0.9 mag. This stellar system has an extended spatial distribution with a half-light radius of 38 +12/-11 pc, which clearly distinguishes it from a globular cluster with comparable luminosity. Thus, Virgo I is one of the faintest dwarf satellites known and is located beyond the reach of the Sloan Digital Sky Survey. This demonstrates the power of this survey program to identify very faint dwarf satellites. This discovery of VirgoI is based only on about 100 square degrees of data, thus a large number of faint dwarf satellites are likely to exist in the outer halo of the Milky Way.Comment: typos are corrected, 6 pages, 4 figures, accepted for publication in Ap

    The Number Density of Old Passively-Evolving Galaxies at z=1 in the Subaru/XMM-Newton Deep Survey Field

    Full text link
    We obtained the number counts and the rest-frame B-band luminosity function of the color-selected old passively-evolving galaxies (OPEGs) at z=1 with very high statistical accuracy using a large and homogeneous sample of about 4000 such objects with z' <25 detected in the area of 1.03 deg^2 in the Subaru/XMM-Newton Deep Survey (SXDS) field. Our selection criteria are defined on the i'-z' and R-z' color-magnitude plane so that OPEGs at z=0.9-1.1 with formation redshift z_f=2-10 are properly sampled. The limiting magnitude corresponds to the luminosity of galaxies with M_*+3 at z=0. We made a pilot redshift observations for 99 OPEG candidates with 19 < z' < 22 and found that at least 78% (73/93) of the entire sample, or 95% (73/77) of these whose redshifts were obtained are indeed lie between z=0.87 and 1.12 and the most of their spectra show the continuum break and strong Ca H and K lines, indicating that these objects are indeed dominated by the old stellar populations. We then compare our results with the luminosity functions of the color- or the morphologically-selected early type galaxies at z=0 taking the evolutionary factor into account and found that the number density of old passive galaxies with sim M_* magnitude at z~1 averaged over the SXDS area is 40-60% of the equivalently red galaxies and 60-85% of the morphologically-selected E/S0 galaxies at z=0 depending on their luminosity evolution. It is revealed that more than half, but not all, of the present-day early-type galaxies had already been formed into quiescent passive galaxies at z=1.Comment: 28 pages, accepted for publication in Astrophysical Journal. The full version of the paper including Fig.3 and Fig.4 (large size) in full resolution is put at http://optik2.mtk.nao.ac.jp/~yamada/astronomy/sxdsred.htm

    The Subaru Deep Field Project: Lymanα\alpha Emitters at Redshift of 6.6

    Full text link
    We present new results of a deep optical imaging survey using a narrowband filter (NB921NB921) centered at λ=\lambda = 9196 \AA ~ together with BB, VV, RR, ii^\prime, and zz^\prime broadband filters in the sky area of the Subaru Deep Field which has been promoted as one of legacy programs of the 8.2m Subaru Telescope. We obtained a photometric sample of 58 Lyα\alpha emitter candidates at zz \approx 6.5 -- 6.6 among 180\sim 180 strong NB921NB921-excess (zNB921>1.0z^\prime - NB921 > 1.0) objects together with a color criterion of iz>1.3i^\prime - z^\prime > 1.3. We then obtained optical spectra of 20 objects in our NB921NB921-excess sample and identified at least nine Lyα\alpha emitters at z6.5z \sim 6.5 -- 6.6 including the two emitters reported by Kodaira et al. (2003). Since our Lyα\alpha emitter candidates are free from strong amplification of gravitational lensing, we are able to discuss their observational properties from a statistical point of view. Based on these new results, we obtain a lower limit of the star formation rate density of ρSFR5.5×104\rho_{\rm SFR} \simeq 5.5 \times 10^{-4} h0.7h_{0.7} MM_\odot yr1^{-1} Mpc3^{-3} at z6.6z \approx 6.6, being consistent with our previous estimate. We discuss the nature of star-formation activity in galaxies beyond z=6z=6.Comment: 49 pages, 16 figures, PASJ, Vol. 57, No. 1, in pres

    The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lya Emitters from z=3.1 to 5.7 in the 1 deg^2 Field: Luminosity Functions and AGN

    Full text link
    We present luminosity functions (LFs) and various properties of Lya emitters (LAEs) at z=3.1, 3.7, and 5.7, in a 1 deg^2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field. We obtain a photometric sample of 858 LAE candidates based on deep Subaru/Suprime-Cam imaging data, and a spectroscopic sample of 84 confirmed LAEs from Subaru/FOCAS and VLT/VIMOS spectroscopy in a survey volume of ~10^6 Mpc^3 with a limiting Lya luminosity of ~3x10^42 erg/s. We derive the LFs of Lya and UV-continuum (~1500 \AA) for each redshift, taking into account the statistical error and the field-to-field variation. We find that the apparent Lya LF shows no significant evolution between z=3.1 and 5.7 within factors of 1.8 and 2.7 in L* and phi*, respectively. On the other hand, the UV LF of LAEs increases from z=3.1 to 5.7, indicating that galaxies with Lya emission are more common at earlier epochs. We identify six LAEs with AGN activities from our spectra combined with VLA, Spitzer, and XMM-Newton data. Among the photometrically selected LAEs at z=3.1 and 3.7, only ~1 % show AGN activities, while the brightest LAEs with logL(Lya) >~ 43.4-43.6 erg/s appear to always host AGNs. Our LAEs are bluer in UV-continuum color than dropout galaxies, suggesting lower extinction and/or younger stellar populations. Our stacking analyses provide upper limits to the radio luminosity and the f(HeII)/f(Lya) line fraction, and constrain the hidden star formation (+low-luminosity AGN) and the primordial population in LAEs.Comment: 75 pages, 27 figures; ApJS in press. High resolution version at http://www.ociw.edu/~ouchi/work/astroph/sxds_LAEs/ouchi_SXDSLAE_ApJS.pd

    Discovery of a Giant Lyα Emitter Near the Reionization Epoch

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at : http://iopscience.iop.org/ Copyright American Astronomical SocietyWe report the discovery of a giant Lyα emitter (LAE) with a Spitzer/Infrared Array Camera (IRAC) counterpart near the reionization epoch at z = 6.595. The giant LAE is found from the extensive 1 deg2 Subaru narrowband survey for z = 6.6 LAEs in the Subaru/XMM-Newton Deep Survey (SXDS) field, and subsequently identified by deep spectroscopy of Keck/DEIMOS and Magellan/IMACS. Among our 207 LAE candidates, this LAE is not only the brightest narrowband object with L(Lyα) = 3.9 ± 0.2 × 1043 erg s–1 in our survey volume of 106 Mpc3, but also a spatially extended Lyα nebula with the largest isophotal area whose major axis is at least 3''. This object is more likely to be a large Lyα nebula with a size of 17 kpc than to be a strongly lensed galaxy by a foreground object. Our Keck spectrum with medium-high spectral and spatial resolutions suggests that the velocity width is v FWHM = 251 ± 21 km s–1, and that the line-center velocity changes by 60 km s–1 in a 10 kpc range. The stellar mass and star formation rate are estimated to be 0.9-5.0 × 1010 M and >34 M yr–1, respectively, from the combination of deep optical to infrared images of Subaru, UKIDSS-Ultra Deep Survey, and Spitzer/IRAC. Although the nature of this object is not yet clearly understood, this could be an important object for studying cooling clouds accreting onto a massive halo, or forming-massive galaxies with significant outflows contributing to cosmic reionization and metal enrichment of intergalactic medium.Peer reviewe

    The Subaru-XMM-Newton Deep Survey (SXDS) VIII.: Multi-wavelength Identification, Optical/NIR Spectroscopic Properties, and Photometric Redshifts of X-ray Sources

    Full text link
    We report the multi-wavelength identification of the X-ray sources found in the Subaru-XMM-Newton Deep Survey (SXDS) using deep imaging data covering the wavelength range between the far-UV to the mid-IR. We select a primary counterpart of each X-ray source by applying the likelihood ratio method to R-band, 3.6micron, near-UV, and 24micron source catalogs as well as matching catalogs of AGN candidates selected in 1.4GHz radio and i'-band variability surveys. Once candidates of Galactic stars, ultra-luminous X-ray sources in a nearby galaxy, and clusters of galaxies are removed there are 896 AGN candidates in the sample. We conduct spectroscopic observations of the primary counterparts with multi-object spectrographs in the optical and NIR; 65\% of the X-ray AGN candidates are spectroscopically-identified. For the remaining X-ray AGN candidates, we evaluate their photometric redshift with photometric data in 15 bands. Utilising the multi-wavelength photometric data of the large sample of X-ray selected AGNs, we evaluate the stellar masses, M*, of the host galaxies of the narrow-line AGNs. The distribution of the stellar mass is remarkably constant from z=0.1 to 4.0. The relation between M* and 2--10 keV luminosity can be explained with strong cosmological evolution of the relationship between the black hole mass and M*. We also evaluate the scatter of the UV-MIR spectral energy distribution (SED) of the X-ray AGNs as a function of X-ray luminosity and absorption to the nucleus. The scatter is compared with galaxies which have redshift and stellar mass distribution matched with the X-ray AGN. The UV-NIR SEDs of obscured X-ray AGNs are similar to those of the galaxies in the matched sample. In the NIR-MIR range, the median SEDs of X-ray AGNs are redder, but the scatter of the SEDs of the X-ray AGN broadly overlaps that of the galaxies in the matched sample.Comment: Accepted for publication in PASJ Subaru special issue. 42 pages, 22 figures. Entire contents of Tables 3, 8, 9, 10, and 11, and ASCII format tables are available from http://www.astr.tohoku.ac.jp/~akiyama/SXDS/index.htm

    Subaru high-z exploration of low-luminosity quasars (SHELLQs). I. Discovery of 15 quasars and bright galaxies at 5.7 < z < 6.9

    Full text link
    We report the discovery of 15 quasars and bright galaxies at 5.7 < z < 6.9. This is the initial result from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the exquisite multiband imaging data produced by the Subaru Hyper Suprime-Cam (HSC) Strategic Program survey. The candidate selection is performed by combining several photometric approaches including a Bayesian probabilistic algorithm to reject stars and dwarfs. The spectroscopic identification was carried out with the Gran Telescopio Canarias and the Subaru Telescope for the first 80 deg2 of the survey footprint. The success rate of our photometric selection is quite high, approaching 100 % at the brighter magnitudes (zAB < 23.5 mag). Our selection also recovered all the known high-z quasars on the HSC images. Among the 15 discovered objects, six are likely quasars, while the other six with interstellar absorption lines and in some cases narrow emission lines are likely bright Lyman-break galaxies. The remaining three objects have weak continua and very strong and narrow Ly alpha lines, which may be excited by ultraviolet light from both young stars and quasars. These results indicate that we are starting to see the steep rise of the luminosity function of z > 6 galaxies, compared with that of quasars, at magnitudes fainter than M1450 ~ -22 mag or zAB ~24 mag. Follow-up studies of the discovered objects as well as further survey observations are ongoing.Comment: Published in ApJ (828:26, 2016

    The Subaru/XMM-Newton Deep Survey (SXDS) - VI. Properties of Active Galactic Nuclei Selected by Optical Variability

    Full text link
    We present the properties of active galactic nuclei (AGN) selected by optical variability in the Subaru/XMM-Newton Deep Field (SXDF). Based on the locations of variable components and light curves, 211 optically variable AGN were reliably selected. We made three AGN samples; X-ray detected optically non-variable AGN (XA), X-ray detected optically variable AGN (XVA), and X-ray undetected optically variable AGN (VA). In the VA sample, we found a bimodal distribution of the ratio between the variable component flux and the host flux. One of these two components in the distribution, a class of AGN with a faint variable component ivari25i'_{\rm{vari}}\sim25 mag in bright host galaxies i21i'\sim21 mag, is not seen in the XVA sample. These AGN are expected to have low Eddington ratios if we naively consider a correlation between bulge luminosity and black hole mass. These galaxies have photometric redshifts zphoto0.5z_{\rm{photo}}\sim0.5 and we infer that they are low-luminosity AGN with radiatively inefficient accretion flows (RIAFs). The properties of the XVA and VA objects and the differences from those of the XA objects can be explained within the unified scheme for AGN. Optical variability selection for AGN is an independent method and could provide a complementary AGN sample which even deep X-ray surveys have not found.Comment: 9 pages, 10 figures, accepted for publication in Ap

    Discovery of the First Low-Luminosity Quasar at z > 7

    Full text link
    We report the discovery of a quasar at z = 7.07, which was selected from the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. This quasar, HSC J124353.93+010038.5, has an order of magnitude lower luminosity than do the other known quasars at z > 7. The rest-frame ultraviolet absolute magnitude is M1450 = -24.13 +/- 0.08 mag and the bolometric luminosity is Lbol = (1.4 +/- 0.1) x 10^{46} erg/s. Its spectrum in the optical to near-infrared shows strong emission lines, and shows evidence for a fast gas outflow, as the C IV line is blueshifted and there is indication of broad absorption lines. The Mg II-based black hole mass is Mbh = (3.3 +/- 2.0) x 10^8 Msun, thus indicating a moderate mass accretion rate with an Eddington ratio 0.34 +/- 0.20. It is the first z > 7 quasar with sub-Eddington accretion, besides being the third most distant quasar, known to date. The luminosity and black hole mass are comparable to, or even lower than, those measured for the majority of low-z quasars discovered by the Sloan Digital Sky Survey, and thus this quasar likely represents a z > 7 counterpart to quasars commonly observed in the low-z universe.Comment: Accepted for publication in ApJ Letter
    corecore