118 research outputs found

    High-resolution mapping of plasmid transcriptomes in different host bacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plasmids are extrachromosomal elements that replicate autonomously, and many can be transmitted between bacterial cells through conjugation. Although the transcription pattern of genes on a plasmid can be altered by a change in host background, the expression range of plasmid genes that will result in phenotypic variation has not been quantitatively investigated.</p> <p>Results</p> <p>Using a microarray with evenly tiled probes at a density of 9 bp, we mapped and quantified the transcripts of the carbazole catabolic plasmid pCAR1 in its original host <it>Pseudomonas resinovorans </it>CA10 and the transconjugant <it>P</it>. <it>putida </it>KT2440(pCAR1) during growth on either carbazole or succinate as the sole carbon source. We identified the operons in pCAR1, which consisted of nearly identical transcription units despite the difference in host background during growth on the same carbon source. In accordance with previous studies, the catabolic operons for carbazole degradation were upregulated during growth on carbazole in both hosts. However, our tiling array results also showed that several operons flanking the transfer gene cluster were transcribed at significantly higher levels in the transconjugant than in the original host. The number of transcripts and the positions of the transcription start sites agreed with our quantitative RT-PCR and primer extension results.</p> <p>Conclusion</p> <p>Our tiling array results indicate that the levels of transcription for the operons on a plasmid can vary by host background. High-resolution mapping using an unbiased tiling array is a valuable tool for the simultaneous identification and quantification of prokaryotic transcriptomes including polycistronic operons and non-coding RNAs.</p

    Distribution of Genes Encoding Nucleoid-Associated Protein Homologs in Plasmids

    Get PDF
    Bacterial nucleoid-associated proteins (NAPs) form nucleoprotein complexes and influence the expression of genes. Recent studies have shown that some plasmids carry genes encoding NAP homologs, which play important roles in transcriptional regulation networks between plasmids and host chromosomes. In this study, we determined the distributions of the well-known NAPs Fis, H-NS, HU, IHF, and Lrp and the newly found NAPs MvaT and NdpA among the whole-sequenced 1382 plasmids found in Gram-negative bacteria. Comparisons between NAP distributions and plasmid features (size, G+C content, and putative transferability) were also performed. We found that larger plasmids frequently have NAP gene homologs. Plasmids with H-NS gene homologs had less G+C content. It should be noted that plasmids with the NAP gene homolog also carried the relaxase gene involved in the conjugative transfer of plasmids more frequently than did those without the NAP gene homolog, implying that plasmid-encoded NAP homologs positively contribute to transmissible plasmids

    Characterization of CYP76M5–8 Indicates Metabolic Plasticity within a Plant Biosynthetic Gene Cluster

    Get PDF
    Recent reports have revealed genomic clustering of enzymatic genes for particular biosynthetic pathways in plant specialized/secondary metabolism. Rice (Oryza sativa) carries two such clusters for production of antimicrobial diterpenoid phytoalexins, with the cluster on chromosome 2 containing four closely related/homologous members of the cytochrome P450 CYP76M subfamily (CYP76M5–8). Notably, the underlying evolutionary expansion of these CYP appears to have occurred after assembly of the ancestral biosynthetic gene cluster, suggesting separate roles. It has been demonstrated that CYP76M7 catalyzes C11α-hydroxylation of ent-cassadiene, and presumably mediates an early step in biosynthesis of the derived phytocassane class of phytoalexins. Here we report biochemical characterization of CYP76M5, -6, and -8. Our results indicate that CYP76M8 is a multifunctional/promiscuous hydroxylase, with CYP76M5 and -7 seeming to provide only redundant activity, while CYP76M6 seems to provide both redundant and novel activity, relative to CYP76M8. RNAi-mediated double knockdown of CYP76M7 and -8 suppresses elicitor inducible phytocassane production, indicating a role for these monooxygenases in phytocassane biosynthesis. In addition, our data suggests that CYP76M5, -6, and -8 may play redundant roles in production of the oryzalexin class of phytoalexins as well. Intriguingly, the preceding diterpene synthase for oryzalexin biosynthesis, unlike that for the phytocassanes, is not found in the chromosome 2 diterpenoid biosynthetic gene cluster. Accordingly, our results not only uncover a complex evolutionary history, but also further suggest some intriguing differences between plant biosynthetic gene clusters and the seemingly similar microbial operons. The implications for the underlying metabolic evolution of plants are then discussed

    Biosynthesis of Phytoalexins and Regulatory Mechanisms of It in Rice

    No full text

    高等植物に含まれるジベレリンに関する研究

    Get PDF
    University of Tokyo (東京大学

    Characterization of Novel Carbazole Catabolism Genes from Gram-Positive Carbazole Degrader Nocardioides aromaticivorans IC177

    No full text
    Nocardioides aromaticivorans IC177 is a gram-positive carbazole degrader. The genes encoding carbazole degradation (car genes) were cloned into a cosmid clone and sequenced partially to reveal 19 open reading frames. The car genes were clustered into the carAaCBaBbAcAd and carDFE gene clusters, encoding the enzymes responsible for the degradation of carbazole to anthranilate and 2-hydroxypenta-2,4-dienoate and of 2-hydroxypenta-2,4-dienoate to pyruvic acid and acetyl coenzyme A, respectively. The conserved amino acid motifs proposed to bind the Rieske-type [2Fe-2S] cluster and mononuclear iron, the Rieske-type [2Fe-2S] cluster, and flavin adenine dinucleotide were found in the deduced amino acid sequences of carAa, carAc, and carAd, respectively, which showed similarities with CarAa from Sphingomonas sp. strain KA1 (49% identity), CarAc from Pseudomonas resinovorans CA10 (31% identity), and AhdA4 from Sphingomonas sp. strain P2 (37% identity), respectively. Escherichia coli cells expressing CarAaAcAd exhibited major carbazole 1,9a-dioxygenase (CARDO) activity. These data showed that the IC177 CARDO is classified into class IIB, while gram-negative CARDOs are classified into class III or IIA, indicating that the respective CARDOs have diverse types of electron transfer components and high similarities of the terminal oxygenase. Reverse transcription-PCR (RT-PCR) experiments showed that the carAaCBaBbAcAd and carDFE gene clusters are operonic. The results of quantitative RT-PCR experiments indicated that transcription of both operons is induced by carbazole or its metabolite, whereas anthranilate is not an inducer. Biotransformation analysis showed that the IC177 CARDO exhibits significant activities for naphthalene, carbazole, and dibenzo-p-dioxin but less activity for dibenzofuran and biphenyl
    corecore