17 research outputs found
Production of Pure Drug Nanocrystals and Nano Co-crystals by Confinement Methods
The use of drug nanocrystals in the drug formulation is increasing due to the large number of poorly water-soluble drug compounds synthetized and due to the advantages brought by the nanonization process. The downsizing processes are done using a top-down approach (milling and homogenization currently employed at the industrial level), while the crystallization process is performed by bottom-up techniques (e.g., antisolvent precipitation to the use of supercritical fluids or spray and freeze drying). In addition, the production of nanocrystals in confined environment can be achieved within microfluidics channels. This review analyzes the processes for the preparation of nanocrystals and co-crystals, divided by top-down and bottom-up approaches, together with their combinations. The combination of both strategies merges the favorable features of each process and avoids the disadvantages of single processes. Overall, the applicability of drug nanocrystals is highlighted by the widespread research on the production processes at the engineering, pharmaceutical, and nanotechnology level.Peer reviewe
Tailoring Porous Silicon for Biomedical Applications : From Drug Delivery to Cancer Immunotherapy
In the past two decades, porous silicon (PSi) has attracted increasing attention for its potential biomedical applications. With its controllable geometry, tunable nanoporous structure, large pore volume/high specific surface area, and versatile surface chemistry, PSi shows significant advantages over conventional drug carriers. Here, an overview of recent progress in the use of PSi in drug delivery and cancer immunotherapy is presented. First, an overview of the fabrication of PSi with various geometric structures is provided, with particular focus on how the unique geometry of PSi facilitates its biomedical applications, especially for drug delivery. Second, surface chemistry and modification of PSi are discussed in relation to the strengthening of its performance in drug delivery and bioimaging. Emerging technologies for engineering PSi-based composites are then summarized. Emerging PSi advances in the context of cancer immunotherapy are also highlighted. Overall, very promising research results encourage further exploration of PSi for biomedical applications, particularly in drug delivery and cancer immunotherapy, and future translation of PSi into clinical applications.Peer reviewe
Bioengineered Porous Silicon Nanoparticles@Macrophages Cell Membrane as Composite Platforms for Rheumatoid Arthritis
Biohybrid nanosystems are at the center of personalized medicine, affording prolonged circulation time and targeting to the disease site, and serving as antigenic sources of vaccines. The optimization and functionality parameters of these nanosystems vary depending on the properties of the core particles. In this work, the effects of the core particles’ surface charge and hydrophobicity are evaluated on the nanosystem coating with vesicles derived from plasma membrane. The measured parameters are the dimensions, surface charge, shape, and stability of the biohybrid nanosystems, both in buffer and in biologically relevant media (plasma and simulated synovial fluid). Moreover, the cytocompatibility properties of the developed nanosystems are evaluated in different cell lines mimicking the target cell populations and other districts of the body involved in the distribution and elimination of the nanoparticles. Finally, the immunological profile of the particles is investigated, highlighting the absence of immune activation promoted by the nanoplatforms.Peer reviewe
In vivo dual-delivery of glucagon like peptide -1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy
Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study.Peer reviewe
Targeted Reinforcement of Macrophage Reprogramming Towards M2 Polarization by IL-4 Loaded Hyaluronic Acid Particles
Correction: ACS Omega 2019, 4, 3, 5931-5931 DOI: 10.1021/acsomega.9b00668Peer reviewe
Preparation and characterization of dentin phosphophoryn-derived peptide-functionalized lignin nanoparticles for enhanced cellular uptake
The surface modification of nanoparticles (NPs) using different ligands is a common strategy to increase NP−cell interactions. Here, dentin phosphophoryn‐derived peptide (DSS) lignin nanoparticles (LNPs) are prepared and characterized, the cellular internalization of the DSS‐functionalized LNPs (LNPs‐DSS) into three different cancer cell lines is evaluated, and their efficacy with the widely used iRGD peptide is compared. It is shown that controlled extent of carboxylation of lignin improves the stability at physiological conditions of LNPs formed upon solvent exchange. Functionalization with DSS and iRGD peptides maintains the spherical morphology and moderate polydispersity of LNPs. The LNPs exhibit good cytocompatibility when cultured with PC3‐MM2, MDA‐MB‐231, and A549 in the conventional 2D model and in the 3D cell spheroid morphology. Importantly, the 3D cell models reveal augmented internalization of peptide‐functionalized LNPs and improve antiproliferative effects when the LNPs are loaded with a cytotoxic compound. Overall, LNPs‐DSS show equal or even superior cellular internalization than the LNPs‐iRGD, suggesting that DSS can also be used to enhance the cellular uptake of NPs into different types of cells, and release different cargos intracellularly.Peer reviewe
Impact of Pore Size and Surface Chemistry of Porous Silicon Particles and Structure of Phospholipids on Their Interactions
By exploiting its porous structure and high loading capacity, porous silicon (PSi) is a promising biomaterial to fabricate protocells and biomimetic reactors. Here, we have evaluated the impact of physicochemical properties of PSi particles [thermally oxidized PSi, TOPSi; annealed TOPSi, AnnTOPSi; (3-aminopropyl) triethoxysilane functionalized thermally carbonized PSi, APTES-TCPSi; and thermally hydrocarbonized PSi, THCPSi] on their surface interactions with different phospholipids. All of the four phospholipids were similarly adsorbed by the surface of PSi particles, except for TOPSi. Among four PSi particles, TOPSi with hydrophilic surface and smaller pore size showed the weakest adsorption toward phosphatidylcholines. By increasing the pore size from roughly 12.5 to 18.0 nm (TOPSi vs AnnTOPSi), the quantity of phosphatidylcholines adsorbed by TOPSi was enhanced to the same level of hydrophilic APTES-TCPSi and hydrophobic THCPSi. The 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) exhibited the highest release ratio of phospholipids from all four PSi particles, and phosphatidylserine (DPPS) showed the lowest release ratio of phospholipids from PSi particles, except for TOPSi, which adsorbed less phospholipids due to the small pore size. There is consistency in the release extent of phospholipids from PSi particles and the isosteric heat of adsorption. Overall, our study demonstrates the importance of pore size and surface chemistry of PSi particles as well as the structure of phospholipids on their interactions. The obtained information can be employed to guide the selection of PSi particles and phospholipids to fabricate highly ordered structures, for example, protocells, or biomimetic reactors
Cardiac Actions of a Small Molecule Inhibitor Targeting GATA4–NKX2-5 Interaction
Transcription factors are fundamental regulators of gene transcription, and many diseases, such as heart diseases, are associated with deregulation of transcriptional networks. In the adult heart, zinc-finger transcription factor GATA4 is a critical regulator of cardiac repair and remodelling. Previous studies also suggest that NKX2-5 plays function role as a cofactor of GATA4. We have recently reported the identification of small molecules that either inhibit or enhance the GATA4–NKX2-5 transcriptional synergy. Here, we examined the cardiac actions of a potent inhibitor (3i-1000) of GATA4–NKX2-5 interaction in experimental models of myocardial ischemic injury and pressure overload. In mice after myocardial infarction, 3i-1000 significantly improved left ventricular ejection fraction and fractional shortening, and attenuated myocardial structural changes. The compound also improved cardiac function in an experimental model of angiotensin II -mediated hypertension in rats. Furthermore, the up-regulation of cardiac gene expression induced by myocardial infarction and ischemia reduced with treatment of 3i-1000 or when micro- and nanoparticles loaded with 3i-1000 were injected intramyocardially or intravenously, respectively. The compound inhibited stretch- and phenylephrine-induced hypertrophic response in neonatal rat cardiomyocytes. These results indicate significant potential for small molecules targeting GATA4–NKX2-5 interaction to promote myocardial repair after myocardial infarction and other cardiac injuries.Peer reviewe
Surface Modification of Acetaminophen Particles by Atomic Layer Deposition
Organic solid pharmaceutical powders are used for the preparation of various drug dosage forms. Primary particles in powder form undergo several processing steps first in pharmaceutical formulations followed by pharmaceutical manufacturing to final dosage form of a drug. These unit operations involve both handling of powders in aqueous or solvent solutions and drying. There will be a probable rise for a demand for the different unit operations in the requirements of protecting the active pharmaceutical ingredient or challenges in powder handling. Besides pharmaceutical manufacturing, there are many biological interfaces where control of surface characteristics of pharmaceutical powders can improve the therapeutic response and bioavailability. In this work, we have modified acetaminophen particles with atomic layer deposition (ALD) by conformal nanometer scale coatings in a one-step coating process. According to the results, ALD comprising common chemistries for Al2O3, TiO2 and ZnO is shown to be a promising coating method for solid pharmaceutical powders. Acetaminophen does not undergo degradation during the ALD coating and maintains its stable polymorphic structure. The nanometer scale ALD coating can sustain the drug release. ALD oxide coated acetaminophen particles show different cytocompatibility assessed in in vitro intestinal Caco-2 cells.Peer reviewe
Current developments and applications of microfluidic technology toward clinical translation of nanomedicines
Nanoparticulate drug delivery systems hold great potential for the therapy of many diseases, especially cancer. However, the translation of nanoparticulate drug delivery systems from academic research to the industrial and clinical practice has been slow. This slow translation can be ascribed to the high batch-to-batch variations and insufficient production rate of the conventional methods, and the lack of technologies for rapid screening of nanoparticulate drug delivery systems with high correlation to the in vivo tests. These issues can be addressed by the microfluidic technologies. For example, microfluidics can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but also create 3D environments with continuous flow to mimic the physiological and/or pathological processes. This review provides an overview of the microfluidic devices developed to prepare nanoparticulate drug delivery systems, including drug nanosuspensions, polymer nanoparticles, polyplexes, structured nanoparticles and theranostic nanoparticles. We also highlight the recent advances of microfluidic systems in fabricating the increasingly realistic models of the in vivo milieu for rapid screening of nanoparticles. Overall, the microfluidic technologies offer a promise approach to accelerate the clinical translation of nanoparticulate drug delivery systems.Peer reviewe