1,436 research outputs found
Mesoscopic Analysis of Structure and Strength of Dislocation Junctions in FCC Metals
We develop a finite element based dislocation dynamics model to simulate the
structure and strength of dislocation junctions in FCC crystals. The model is
based on anisotropic elasticity theory supplemented by the explicit inclusion
of the separation of perfect dislocations into partial dislocations bounding a
stacking fault. We demonstrate that the model reproduces in precise detail the
structure of the Lomer-Cottrell lock already obtained from atomistic
simulations. In light of this success, we also examine the strength of
junctions culminating in a stress-strength diagram which is the locus of points
in stress space corresponding to dissolution of the junction.Comment: 9 Pages + 4 Figure
Slip energy barriers in aluminum and implications for ductile versus brittle behavior
We conisder the brittle versus ductile behavior of aluminum in the framework
of the Peierls-model analysis of dislocation emission from a crack tip. To this
end, we perform first-principles quantum mechanical calculations for the
unstable stacking energy of aluminum along the Shockley partial
slip route. Our calculations are based on density functional theory and the
local density approximation and include full atomic and volume relaxation. We
find that in aluminum J/m. Within the Peierls-model
analysis, this value would predict a brittle solid which poses an interesting
problem since aluminum is typically considered ductile. The resolution may be
given by one of three possibilites: (a) Aluminum is indeed brittle at zero
temperature, and becomes ductile at a finite temperature due to motion of
pre-existing dislocations which relax the stress concentration at the crack
tip. (b) Dislocation emission at the crack tip is itself a thermally activated
process. (c) Aluminum is actually ductile at all temperatures and the
theoretical model employed needs to be significantly improved in order to
resolve the apparent contradiction.Comment: 4 figures (not included; send requests to [email protected]
Ab initio parametrised model of strain-dependent solubility of H in alpha-iron
The calculated effects of interstitial hydrogen on the elastic properties of
alpha-iron from our earlier work are used to describe the H interactions with
homogeneous strain fields using ab initio methods. In particular we calculate
the H solublility in Fe subject to hydrostatic, uniaxial, and shear strain. For
comparison, these interactions are parametrised successfully using a simple
model with parameters entirely derived from ab initio methods. The results are
used to predict the solubility of H in spatially-varying elastic strain fields,
representative of realistic dislocations outside their core. We find a strong
directional dependence of the H-dislocation interaction, leading to strong
attraction of H by the axial strain components of edge dislocations and by
screw dislocations oriented along the critical slip direction. We
further find a H concentration enhancement around dislocation cores, consistent
with experimental observations.Comment: part 2/2 from splitting of 1009.3784 (first part was 1102.0187),
minor changes from previous version
The role of Helium-3 impurities in the stress induced roughening of superclimbing dislocations in solid Helium-4
We analyze the stress induced and thermally assisted roughening of a forest
of superclimbing dislocations in a Peierls potential in the presence of
Helium-3 impurities and randomly frozen in static stresses. It is shown that
the temperature of the dip in the flow rate observed by Ray and Hallock
(Phys.Rev. Lett. {\bf 105}, 145301 (2010)) is determined by the energy of the
impurity activation from dislocation core. However, it is suppressed by,
essentially, the logarithm of the impurity fraction. The width of the dip is
determined by inhomogeneous fluctuations of the stresses and is shown to be
much smaller than .Comment: Submitted to the LT26-conference proceeding
Optical metrology alignment and impact on the measurement performance of the LISA Technology Package
Discrete models of dislocations and their motion in cubic crystals
A discrete model describing defects in crystal lattices and having the
standard linear anisotropic elasticity as its continuum limit is proposed. The
main ingredients entering the model are the elastic stiffness constants of the
material and a dimensionless periodic function that restores the translation
invariance of the crystal and influences the Peierls stress. Explicit
expressions are given for crystals with cubic symmetry: sc, fcc and bcc.
Numerical simulations of this model with conservative or damped dynamics
illustrate static and moving edge and screw dislocations and describe their
cores and profiles. Dislocation loops and dipoles are also numerically
observed. Cracks can be created and propagated by applying a sufficient load to
a dipole formed by two edge dislocations.Comment: 23 pages, 15 figures, to appear in Phys. Rev.
Electronic structure and total energy of interstitial hydrogen in iron: Tight binding models
An application of the tight binding approximation is presented for the
description of electronic structure and interatomic force in magnetic iron,
both pure and containing hydrogen impurities. We assess the simple canonical
d-band description in comparison to a non orthogonal model including s and d
bands. The transferability of our models is tested against known properties
including the segregation energies of hydrogen to vacancies and to surfaces of
iron. In many cases agreement is remarkably good, opening up the way to quantum
mechanical atomistic simulation of the effects of hydrogen on mechanical
properties
Stability of undissociated screw dislocations in zinc-blende covalent materials from first principle simulations
The properties of perfect screw dislocations have been investigated for
several zinc-blende materials such as diamond, Si, -SiC, Ge and GaAs, by
performing first principles calculations. For almost all elements, a core
configuration belonging to shuffle set planes is favored, in agreement with low
temperature experiments. Only for diamond, a glide configuration has the lowest
defect energy, thanks to an sp hybridization in the core
- …