1,436 research outputs found

    Mesoscopic Analysis of Structure and Strength of Dislocation Junctions in FCC Metals

    Full text link
    We develop a finite element based dislocation dynamics model to simulate the structure and strength of dislocation junctions in FCC crystals. The model is based on anisotropic elasticity theory supplemented by the explicit inclusion of the separation of perfect dislocations into partial dislocations bounding a stacking fault. We demonstrate that the model reproduces in precise detail the structure of the Lomer-Cottrell lock already obtained from atomistic simulations. In light of this success, we also examine the strength of junctions culminating in a stress-strength diagram which is the locus of points in stress space corresponding to dissolution of the junction.Comment: 9 Pages + 4 Figure

    Slip energy barriers in aluminum and implications for ductile versus brittle behavior

    Full text link
    We conisder the brittle versus ductile behavior of aluminum in the framework of the Peierls-model analysis of dislocation emission from a crack tip. To this end, we perform first-principles quantum mechanical calculations for the unstable stacking energy γus\gamma_{us} of aluminum along the Shockley partial slip route. Our calculations are based on density functional theory and the local density approximation and include full atomic and volume relaxation. We find that in aluminum γus=0.224\gamma_{us} = 0.224 J/m2^2. Within the Peierls-model analysis, this value would predict a brittle solid which poses an interesting problem since aluminum is typically considered ductile. The resolution may be given by one of three possibilites: (a) Aluminum is indeed brittle at zero temperature, and becomes ductile at a finite temperature due to motion of pre-existing dislocations which relax the stress concentration at the crack tip. (b) Dislocation emission at the crack tip is itself a thermally activated process. (c) Aluminum is actually ductile at all temperatures and the theoretical model employed needs to be significantly improved in order to resolve the apparent contradiction.Comment: 4 figures (not included; send requests to [email protected]

    Ab initio parametrised model of strain-dependent solubility of H in alpha-iron

    Full text link
    The calculated effects of interstitial hydrogen on the elastic properties of alpha-iron from our earlier work are used to describe the H interactions with homogeneous strain fields using ab initio methods. In particular we calculate the H solublility in Fe subject to hydrostatic, uniaxial, and shear strain. For comparison, these interactions are parametrised successfully using a simple model with parameters entirely derived from ab initio methods. The results are used to predict the solubility of H in spatially-varying elastic strain fields, representative of realistic dislocations outside their core. We find a strong directional dependence of the H-dislocation interaction, leading to strong attraction of H by the axial strain components of edge dislocations and by screw dislocations oriented along the critical slip direction. We further find a H concentration enhancement around dislocation cores, consistent with experimental observations.Comment: part 2/2 from splitting of 1009.3784 (first part was 1102.0187), minor changes from previous version

    The role of Helium-3 impurities in the stress induced roughening of superclimbing dislocations in solid Helium-4

    Full text link
    We analyze the stress induced and thermally assisted roughening of a forest of superclimbing dislocations in a Peierls potential in the presence of Helium-3 impurities and randomly frozen in static stresses. It is shown that the temperature of the dip TdT_d in the flow rate observed by Ray and Hallock (Phys.Rev. Lett. {\bf 105}, 145301 (2010)) is determined by the energy of the impurity activation from dislocation core. However, it is suppressed by, essentially, the logarithm of the impurity fraction. The width of the dip is determined by inhomogeneous fluctuations of the stresses and is shown to be much smaller than TdT_d.Comment: Submitted to the LT26-conference proceeding

    Discrete models of dislocations and their motion in cubic crystals

    Get PDF
    A discrete model describing defects in crystal lattices and having the standard linear anisotropic elasticity as its continuum limit is proposed. The main ingredients entering the model are the elastic stiffness constants of the material and a dimensionless periodic function that restores the translation invariance of the crystal and influences the Peierls stress. Explicit expressions are given for crystals with cubic symmetry: sc, fcc and bcc. Numerical simulations of this model with conservative or damped dynamics illustrate static and moving edge and screw dislocations and describe their cores and profiles. Dislocation loops and dipoles are also numerically observed. Cracks can be created and propagated by applying a sufficient load to a dipole formed by two edge dislocations.Comment: 23 pages, 15 figures, to appear in Phys. Rev.

    Electronic structure and total energy of interstitial hydrogen in iron: Tight binding models

    Get PDF
    An application of the tight binding approximation is presented for the description of electronic structure and interatomic force in magnetic iron, both pure and containing hydrogen impurities. We assess the simple canonical d-band description in comparison to a non orthogonal model including s and d bands. The transferability of our models is tested against known properties including the segregation energies of hydrogen to vacancies and to surfaces of iron. In many cases agreement is remarkably good, opening up the way to quantum mechanical atomistic simulation of the effects of hydrogen on mechanical properties

    Stability of undissociated screw dislocations in zinc-blende covalent materials from first principle simulations

    Full text link
    The properties of perfect screw dislocations have been investigated for several zinc-blende materials such as diamond, Si, β\beta-SiC, Ge and GaAs, by performing first principles calculations. For almost all elements, a core configuration belonging to shuffle set planes is favored, in agreement with low temperature experiments. Only for diamond, a glide configuration has the lowest defect energy, thanks to an sp2^2 hybridization in the core
    • …
    corecore